Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=3.(\(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-....+\frac{1}{59}-\frac{1}{60}\)\(\frac{1}{61}\))
M= 3.(\(\frac{1}{5}-\frac{1}{61}\))
M=\(\frac{168}{305}\)
\(M=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
\(M=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(M=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(M=\frac{84}{305}\)
BÀi này dễ thôi bạn ạ
N=3(1/5.7+1/7.9+.........+1/197.199)
N=3/2( 1/5-1/7+1/7-1/9+1/9-..........+1/197-1/199)
N=3/2(1/5-1/199)
N=3/2.194/995
N=291/995
k đúng cho mình nhé
N=3.1/2.(1/5-1/7+1/7-1/9+1/9-1/11+...+1/197-1/199)
N=3.1/2.(1/5-1/99)
N=3.1/2.94/495
N=3.47/495
N=47/165
A. Đặt A= biểu thức đã cho
=>\(\frac{A}{3}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=>\(\frac{A}{3}.2=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
=>\(\frac{2A}{3}-\frac{A}{3}=2-\frac{1}{2^9}\)
=>\(A=\frac{3\left(2^{10}-1\right)}{2^9}\)
B. Đặt B=biểu thức đã cho
\(\Rightarrow\frac{B}{2}=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2015.2017}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(=\frac{1}{3}-\frac{1}{2017}=\frac{2014}{6051}\)
\(\Rightarrow B=\frac{4028}{6051}\)
=3(1/1.3+1/3.5+1/5.7+1/7.9)
=3/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9) vi khoang cach tu 1-3;3-5;5-7;7-9 la 2 nen ta nhan tat ca voi 1/2 ma 3.1/2=3/2
=3/2.(1-1/9) rut gon -1/3+1/3;-1/5+1/5;-1/7+1/7=0
=3/2.8/9=4/3
ta có :3/(1.3)+3/(3.5)+3/(5.7)+3/(7.9)
ta đặt 3 làm chung rồi tự làm đc
NHẦM GIẢI LẠI :
\(A=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{3}{2}.\frac{16}{51}=\frac{8}{17}\)
=> A= \(\frac{3}{2}\) .( \(\frac{1}{5}\) - \(\frac{1}{7}\) + \(\frac{1}{7}\) - \(\frac{1}{9}\) +...+ \(\frac{1}{59}\) - \(\frac{1}{61}\))
=> A=\(\frac{3}{2}\) . (\(\frac{1}{5}\) - \(\frac{1}{61}\) ) => A= \(\frac{3}{2}\). \(\frac{56}{305}\) = \(\frac{84}{305}\) Vậy A= \(\frac{84}{305}\)
\(A=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
\(=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{53}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\frac{56}{305}\)
\(=\frac{84}{305}\)
biểu thức trên =\(\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....+\frac{1}{56}-\frac{1}{61}\right)=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{1}{2}x\frac{61}{305}=\frac{1}{10}=0,1.\)
vậy biểu thức trên =0,1
\(\frac{2}{3}A=\frac{2}{3}.\left(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\right)\)
\(\frac{2}{3}A=\frac{2.3}{3.5.7}+\frac{2.3}{3.7.9}+...+\frac{2.3}{3.59.61}\)
\(\frac{2}{3}A=\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\)
\(\frac{2}{3}A=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)
\(\frac{2}{3}A=\frac{1}{5}-\frac{1}{61}\)
\(\frac{2}{3}A=\frac{56}{305}\)
\(A=\frac{56}{305}.\frac{3}{2}\)
\(A=\frac{84}{305}\)
\(M=\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{61.63}\)
\(2M=2.\left(\frac{3}{5.7}+\frac{3}{7.9}+.....+\frac{3}{61.63}\right)\)
\(2M=3.\left(\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{61.63}\right)\)
\(2M=3.\left(\frac{1}{5}-\frac{1}{63}\right)\)
\(2M=\frac{3.58}{315}=\frac{58}{105}\)
\(M=\frac{58}{105}.\frac{1}{2}=\frac{29}{105}\)
Ta có thể vt gọn thành :
M = \(\frac{3}{2}\).( \(\frac{1}{5}\)\(-\)\(\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\)... \(+\frac{1}{61}-\frac{1}{63}\))
M = \(\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{63}\right)\)
M = \(\frac{3}{2}.\frac{58}{315}\)
M = \(\frac{29}{105}\)