K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Gọi I và K lần lượt là trung điểm của AB và CD , ta có IK là đoạn vuông góc chung của AB và CD và độ dài đoạn IK là khoảng cách cần tìm :

Vectơ trong không gian, Quan hệ vuông góc

6 tháng 6 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi I và K lần lượt là trung điểm của AB và CD (h.3.80), ta có IK là đoạn vuông góc chung của AB và CD và độ dài đoạn IK là khoảng cách cần tìm:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

8 tháng 2 2021

undefined

8 tháng 2 2021

sửa đề: AB = BC = CA = AD = BD = a

31 tháng 3 2017

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

10 tháng 9 2019

7 tháng 12 2017

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Gọi I, K lần lượt là trung điểm của cạnh AB và CD

Qua K kẻ đường thẳng d // AB, trên d lấy A', B' sao cho K là trung điểm của A'B' và

KA' = IA

* Xét tam giác CKB’ và DKA’ có:

KC= KD ( giả thiết)

KB’= KA’( cách dựng)

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11 ( hai góc đối đỉnh )

=> ∆ CKB’ = ∆ DKA’ ( c.g.c)

=> B’C = A’D

*Xét tứ giác IBB’K có IB= KB’ và IB // KB’ ( cách dựng)

=> Tứ giác IBB’K là hình bình hành

=> BB’ // IK (1)

Chứng minh tương tự, ta có: AA’// IK (2)

Từ (1) và (2) suy ra: BB’// IK// AA’ (*)

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Lại có:IK ⊥ CK

=> IK ⊥ (CKB') (**)

Từ (*) và (**) suy ra BB' ⊥ (CKB') ; AA' ⊥ (CKB')

⇒ BB' ⊥ B'C; AA' ⊥ A'D

* Xét hai tam giác vuông BCB’ và ADA’ có:

BB’ = AA’ (= IK)

CB’ = A’D (chứng minh trên)

=> ∆ BCB’ = ∆ ADA’ ( cạnh huyền –cạnh góc vuông)

=> BC= AD.

* Chứng minh tương tự, AC = BD

29 tháng 7 2019

12 tháng 3 2019

13 tháng 6 2017

Ta có N là trung điểm của BC

Suy ra A B → + A C → = 2 A N →  

Lại có: A D → = 2 A Q →  (Q là trung điểm của AD)

Do đó A B → + A C → + A D → = 2 A N → + 2 A Q → = 2 A N → + A Q →  (1)

Tạ lại có G là trọng tâm của tứ diện ABCD nên G là trung điểm của NQ (tính chất trọng tâm của tứ diện) ⇒ A N → + A Q → = 2 A G →   (2)

Từ (1) và (2) suy ra A B → + A C → + A D → = 4 A G → .

Đáp án A