Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{74\times158+69}{158\times75-89}\)
= \(\frac{74\times158+69}{158\times\left(74+1\right)-89}\)
= \(\frac{74\times158+69}{158\times74+158-89}\)
= \(\frac{74\times158+69}{158\times74+\left(158-89\right)}\)
= \(\frac{74\times158+69}{74\times158+69}\)
= 1
\(A=\)\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(A=\)\(1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)
\(A=\)\(9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(A=\)\(9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=\)\(9-\left(1-\frac{1}{10}\right)\)
\(A=\)\(9-\frac{9}{10}\)
\(A=\)\(\frac{81}{10}\)
A=(1-1/2)+(1-1/6)+...+(1-89/90)
A=1x9-(1/2+1/6+...+1/90)
A=9-(1/1x2+1/2x3+...+1/9x10)
A=9-(1-1/2+1/2-1/3+1/3+...+1/9 -1/10)
A=9-(1-1/10)
A=9-9/10
A=81/10=8,1
hok tốt nhé
\(a)\) Ta có :
\(\frac{51}{85}=\frac{3}{5}\)
\(\frac{58}{145}=\frac{2}{5}\)
Vì \(\frac{3}{5}>\frac{2}{5}\) nên \(\frac{51}{85}>\frac{58}{145}\)
Vậy \(\frac{51}{85}>\frac{58}{145}\)
\(b)\) Ta có :
\(\frac{69}{-230}=\frac{-3}{10}\)
\(\frac{-39}{143}=\frac{-3}{11}\)
Vì \(\frac{-3}{10}< \frac{-3}{11}\) nên \(\frac{69}{-230}< \frac{-39}{143}\)
Vậy \(\frac{69}{-230}< \frac{-39}{143}\)
\(c)\) Ta có :
\(1+\frac{-7}{41}=\frac{34}{41}\)
\(1+\frac{13}{-47}=\frac{34}{47}\)
Vì \(\frac{34}{41}>\frac{34}{47}\) nên \(1+\frac{-7}{41}>1+\frac{13}{-47}\) hay \(\frac{-7}{41}>\frac{13}{-47}\)
Vậy \(\frac{-7}{41}>\frac{13}{-47}\)
\(d)\) Ta có :
\(1-\frac{40}{49}=\frac{9}{49}\)
\(\frac{15}{21}=\frac{5}{7}=\frac{35}{49}< \frac{40}{49}\)
Vậy \(\frac{40}{49}>\frac{15}{21}\)
Trả lời
\(\frac{31}{17}+\left(\frac{-5}{13}\right)+\left(\frac{-8}{13}\right)-\frac{4}{17}\)
\(=\left(\frac{31}{17}-\frac{4}{17}\right)+\left[\left(\frac{-5}{13}\right)+\left(\frac{-8}{13}\right)\right]\)
\(=\frac{27}{17}+\left(\frac{-13}{13}\right)\)
\(=\frac{27}{17}+\left(-1\right)\)
\(=\frac{10}{17}\)
\(\frac{31}{17}+\frac{-5}{13}+\frac{-8}{13}-\frac{4}{17}\)
\(=\left(\frac{31}{17}-\frac{4}{17}\right)+\left(\frac{-5}{13}+\frac{-8}{13}\right)\)
\(=\frac{27}{13}+\frac{-13}{13}\)
\(=\frac{27}{13}+\left(-1\right)\)
\(=\frac{10}{17}\)
2/5 . A = 2/10.12 + 2/12.14 + ....... + 2/998.1000
= 1/10 - 1/12 + 1/12 - 1/14 + ..... + 1/998 - 1/1000
= 1/10 - 1/1000 = 99/1000
=> A = 99/1000 : 2/5 = 99/400
Tk mk nha
Mình làm tắt cũng dc nhé có gì ko dc hỏi mình nhé
Ta có:A=(5/10-5/12):2+(5/12-2/14):2+...+(5/998-5/1000):2
suy ra A=5/10-5/1000=99/200
Tính hợp lý
\(\frac{-5}{7}\). \(\frac{6}{19}\)+ \(\frac{13}{-7}\). \(\frac{5}{19}\)- \(\frac{15}{7}\)
\(\frac{-5}{7}.\frac{6}{19}+\frac{13}{-7}.\frac{5}{19}-\frac{15}{7}=\frac{-5}{7}.\frac{6}{19}+\frac{13}{19}.\frac{-5}{7}+\frac{-5}{7}.3\)
\(=\frac{-5}{7}.\left(\frac{6}{19}+\frac{13}{19}+3\right)=\frac{-5}{7}.4=\frac{-20}{7}\)
\(A=\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}\)
\(=\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}\)
\(=\frac{1}{7}-\frac{1}{13}\)
\(=\frac{6}{91}\)
\(A=\frac{1}{7\times8}+\frac{1}{8\times9}+\frac{1}{9\times10}+...+\frac{1}{13\times14}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{14}\)
\(=\frac{1}{7}-\frac{1}{14}=\frac{1}{14}\)
\(\frac{74\times158+69}{158\times75-89}\)
= \(\frac{74\times158+69}{158\times\left(74+1\right)-89}\)
= \(\frac{74\times158+69}{158\times74+158-89}\)
= \(\frac{74\times158+69}{158\times74+\left(158-89\right)}\)
= \(\frac{74\times158+69}{74\times158+69}\)
= 1