Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(-1\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}.+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
=\(-1\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
=\(-1\left(\frac{1}{4}-\frac{1}{10}\right)\)=\(-1.\frac{3}{20}=\frac{-3}{20}\)
Nhanh tay lên mk k cho , hôm nay mk có chuyện vui lên hào phóng tí!
1,
\(\left(\frac{4}{9}-\frac{3}{7}-\frac{4}{11}\right)-\left(\frac{11}{7}+\frac{4}{9}-\frac{48}{11}\right)\)
\(=\frac{4}{9}-\frac{3}{7}-\frac{4}{11}-\frac{11}{7}-\frac{4}{9}+\frac{48}{11}\)
\(=\left(\frac{4}{9}-\frac{4}{9}\right)-\left(\frac{3}{7}+\frac{11}{7}\right)+\left(\frac{48}{11}-\frac{4}{11}\right)\)
\(=0-2+4\)
\(=2\)
2,
a, \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2018}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2019}{2018}\)
\(=\frac{2019}{2}\)
b, \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
\(A=\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}\)
\(=\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}\)
\(=\frac{1}{7}-\frac{1}{13}\)
\(=\frac{6}{91}\)
\(A=\frac{1}{7\times8}+\frac{1}{8\times9}+\frac{1}{9\times10}+...+\frac{1}{13\times14}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{14}\)
\(=\frac{1}{7}-\frac{1}{14}=\frac{1}{14}\)
a/=(74-(-1937)1)
=74-(-1937)
=2011
b/=4/7+5/6:5-3/8*(-4)
=4/7+1/6-(-3/2)
=31/42-(-3/2)
=47/21
minh chi biet bay nhieu