\(\frac{1\cdot4}{2\cdot3}+\frac{2\cdot5}{3\cdot4}+\frac{3\cdot6}{4\cdot5}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

\(\frac{2327}{4851}\)

co  can cách  làm ko bạn      

6 tháng 4 2017

có,bạn gửi luôn cho mình

B = 1/1 x 2 x 3 + 1/2 x 3 x 4 + ... + 1/98 x 99 x 100 B = 1 - 1/2 + 1/2 + 1/2 - 1/3 + 1/3 + ... + 1/98 + 1/99 -1/100 B = 1 1/100 B = 99/100

14 tháng 1 2019

2Q = 1-1/3-1/2+1/4+1/3-1/5-1/4+1/6-........+1/97-1/99-1/98+1/100 = 1-1/2-1/99+1/100 = 4949/9900 >> Q = 49499/19800 

14 tháng 1 2019

\(Q=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}+\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{99}{100}=\frac{99}{200}\) (không chắc cho lắm :v)

26 tháng 2 2018

Ta có  1/1.2-1/2.3=2/1.2.3;1/2.3-1/3.4=2/2.3.4 .....1/98.99-1/99.100=2/98.99.100                                                                                               2A=2/1.2.3+2/2.3.4+....+2/98.99.100 = 1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100 = 1/2-1/99.100 = 4949/9900                                           A =4949/19800                                                                                                     

26 tháng 2 2018

dễ ợt tự làm đê

20 tháng 6 2016

Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{97.99}+\frac{1}{99.100}\)

\(\Rightarrow2A=2\left(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{97.99}+\frac{1}{98.100}\right)\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{2.4}+\frac{2}{3.5}+...+\frac{2}{97.99}+\frac{2}{98.100}\)

\(\Rightarrow2A=\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)+\left(\frac{2}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)

\(\Rightarrow2A=\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(\Rightarrow2A=\left(1-\frac{1}{99}\right)+\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\Rightarrow2A=\left(\frac{99}{99}-\frac{1}{99}\right)+\left(\frac{50}{100}-\frac{1}{100}\right)\)

\(\Rightarrow2A=\frac{98}{99}+\frac{49}{100}=\frac{9800}{9900}+\frac{4851}{9900}=\frac{14651}{9900}\)

\(\Rightarrow A=\frac{14651}{9900}:2=\frac{14651}{9900}.\frac{1}{2}=\frac{14651}{19800}\)

bạn nhớ thử lại nhé :)

28 tháng 7 2016

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

Ủng hộ mk nha !!! ^_^

28 tháng 7 2016

Ta có: \(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

11 tháng 5 2017

\(a=\frac{6.2.3.4+6.3.4.5+6.4.5.6+...+6.98.99.100}{2.3.4+3.4.5+4.5.6+...+98.99.100}=6\)

thay vào p(x) suy ra a không là nghiệm của đa thức nhé bạn

11 tháng 5 2017

a = 6.2.3.4+6.3.4.5+6.4.5.6 +...+6.98.99.100 / 2.3.4+3.4.5+4.5.6+...+98.99.100

  = 6 > 0

Ta thay vào P(x) 

Suy ra a ko là nghiệm của đa thức

4 tháng 9 2016

\(B=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)

\(B=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)

\(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)

\(B=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)

\(B=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)