Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = |x - 2| + |2x - 3| + |3x - 4|
= |x - 2| + |2x - 3| + |4 - 3x|
\(\ge\)|x - 2 + 2x - 3 + 4 - 3x| = 1
vậy MINA = 1
a) Ta có: 3|x - 14| \(\ge\)0 \(\forall\)x
=> 3|x - 14| + 4 \(\ge\)4 \(\forall\)x
=> \(\frac{6}{3\left|x-14\right|+4}\le\frac{3}{2}\forall x\)
Dấu "=" xảy ra <=> x - 14 = 0 <=> x = 14
Vậy MaxA = 3/2 <=> x = 14
b) Mình có: |2x + 6| = \(\orbr{\begin{cases}2x+6\\-2x-6\end{cases}}\)\(\Rightarrow\)BMin = - 2x- 6 + 2 + 2x = -4 khi x \(\le\)-3
Áp dụng BĐT |x|+|y|>=|x+y|
A=|2x-2| + |2x-2013|
A=|2-2x| + |2x-2013|>=|-2011|=2011
A=|2x-6|+|2x-2015|=|2x-6|+|2015-2x|≥|2x-6+2015-2x|=|2009|=2009
vậy GTNN của A là 2009 tại 2x-6=0 hoặc 2015-2x=0
2x=6 hoặc 2x=2015
x=3 hoặc x=2015/2