Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(f\left(x\right)=3x^2-2x-7\)
\(=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{22}{3}\)
\(=2\left(x-\dfrac{1}{3}\right)^2-\dfrac{22}{3}\ge-\dfrac{22}{3}\forall x\)
Vậy GTNN của biểu thức là \(-\dfrac{22}{3}\) khi \(x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)
\(b,f\left(x\right)=5x^2+7x=5\left(x^2+\dfrac{7}{5}x+\dfrac{49}{100}\right)-\dfrac{49}{20}\)\(=5\left(x+\dfrac{7}{10}\right)^2-\dfrac{49}{20}\ge-\dfrac{49}{20}\forall x\)
Vậy Giá trị nhỏ nhất của biểu thức là \(-\dfrac{49}{20}\) khi \(x+\dfrac{7}{10}=0\Rightarrow x=-\dfrac{7}{10}\)
\(c,f\left(x\right)=-5x^2+9x-2=-5\left(x^2-\dfrac{9}{5}x+\dfrac{81}{100}\right)+\dfrac{41}{20}\)\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{41}{20}\le\dfrac{41}{20}\forall x\)
Vậy GTLN của biểu thức là \(\dfrac{41}{20}\) khi \(x-\dfrac{9}{10}=0\Rightarrow x=\dfrac{9}{10}\)
\(d,f\left(x\right)=-7x^2+3x=-7\left(x^2-\dfrac{3}{7}x+\dfrac{9}{196}\right)+\dfrac{9}{28}\)\(=-7\left(x-\dfrac{3}{14}\right)^2+\dfrac{9}{28}\le\dfrac{9}{28}\forall x\)
Vậy GTLN của biểu thức là \(\dfrac{9}{28}\) khi \(x-\dfrac{3}{14}=0\Rightarrow x=\dfrac{3}{14}\)
1/ \(f\left(x\right)=3x^2-2x-7\)
\(=3\left(x^2-\dfrac{2}{3}x-7\right)\)
\(=3\left(x^2-\dfrac{2}{3}+\dfrac{1}{9}-\dfrac{64}{9}\right)\)
\(=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{64}{3}\)
Ta có: \(3\left(x-\dfrac{1}{3}\right)^2\ge0\forall x\Rightarrow3\left(x-\dfrac{1}{3}\right)^2-\dfrac{64}{3}\ge-\dfrac{64}{3}\forall x\)
Dấu "=" xảy ra khi \(x-\dfrac{1}{3}=0\) hay \(x=\dfrac{1}{3}\)
Vậy MINf(x) = \(-\dfrac{64}{3}\) khi x = \(\dfrac{1}{3}\).
2/ \(f\left(x\right)=5x^2+7x\)
\(=5\left(x^2+\dfrac{7}{5}x\right)=5\left(x^2+\dfrac{7}{5}x+\dfrac{49}{100}-\dfrac{49}{100}\right)\)
\(=5\left(x+\dfrac{7}{10}\right)^2-\dfrac{49}{20}\)
Ta có: \(5\left(x+\dfrac{7}{10}\right)^2\ge0\forall x\Rightarrow5\left(x+\dfrac{7}{10}\right)^2-\dfrac{49}{20}\ge-\dfrac{49}{20}\forall x\)
Dấu "=" xảy ra khi \(x+\dfrac{7}{10}=0\) hay \(x=-\dfrac{7}{10}\)
Vậy MINf(x) = \(-\dfrac{49}{20}\) khi x = \(-\dfrac{7}{10}\).
1/ \(f\left(x\right)=-5x^2+9x-2\)
\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{2}{5}\right)\)
\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{81}{100}-\dfrac{41}{100}\right)\)
\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{41}{20}\)
Ta có: \(-5\left(x-\dfrac{9}{10}\right)^2\le0\forall x\Rightarrow-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{41}{20}\le\dfrac{41}{20}\forall x\)
Dấu "=" xảy ra khi \(x-\dfrac{9}{10}=0\) hay \(x=\dfrac{9}{10}\)
Vậy MAXf(x) = \(\dfrac{41}{20}\) khi x = \(\dfrac{9}{10}\)
2/ \(f\left(x\right)=-7x^2+3x=-7\left(x^2-\dfrac{3}{7}x+\dfrac{9}{196}\right)+\dfrac{9}{28}\)
\(=-7\left(x-\dfrac{3}{14}\right)^2+\dfrac{9}{28}\)
Ta có: \(-7\left(x-\dfrac{3}{14}\right)^2\le0\forall x\Rightarrow-7\left(x-\dfrac{3}{14}\right)^2+\dfrac{9}{28}\le\dfrac{9}{28}\forall x\)
Dấu "=" xảy ra khi \(x-\dfrac{3}{14}=0\) hay x = \(\dfrac{3}{14}\)
Vậy MAXf(x) = \(\dfrac{9}{28}\) khi x = \(\dfrac{3}{14}\).
1. Ta có: \(f\left(x\right)=9x^2-12x+1=\left(3x\right)^2-2.3x.2+2^2-3\)
\(=\left(3x-2\right)^2-3\)
Vì \(\left(3x-2\right)^2\ge0\) với mọi x \(\Rightarrow\left(3x-2\right)^2-3\ge-3\) hay \(f\left(x\right)\ge-3\)
Dấu ''='' xảy ra \(\Leftrightarrow\left(3x-2\right)^2=0\Rightarrow3x-2=0\Rightarrow3x=2\Rightarrow x=\dfrac{2}{3}\)
Vậy min f(x) =-3 khi \(x=\dfrac{2}{3}\)
2. Ta có: \(f\left(x\right)=2x^2-7x+5=2.\left(x^2-3,5x\right)+5=2.\left(x^2-2.x.1,75+1,75^2\right)-2.1,75^2+5\)
\(=2.\left(x-1,75\right)^2-1,125\)
Vì \(2.\left(x-1,75\right)^2\ge0\Rightarrow2.\left(x-1,75\right)^2-1,125\ge-1,125\Rightarrow f\left(x\right)\ge-1,125\)
Dấu ''='' xảy ra \(\Leftrightarrow2.\left(x-1,75\right)^2=0\Rightarrow x-1,75=0\Rightarrow x=1,75\)
Vậy min f(x)=-1,125 khi x=1,75
3.\(3x^2-10x=3.\left(x^2-\dfrac{10}{3}x\right)=3.\left(x^2-2.x.\dfrac{5}{3}\right)\)
\(=3.\left[x^2-2.x.\dfrac{5}{3}+\left(\dfrac{5}{3}\right)^2\right]-3.\left(\dfrac{5}{3}\right)^2\)
\(=3.\left(x-\dfrac{5}{3}\right)^2-\dfrac{25}{3}\)
Vì \(3.\left(x-\dfrac{5}{3}\right)^2\ge0\Rightarrow3.\left(x-\dfrac{5}{3}\right)^2-\dfrac{25}{3}\ge-\dfrac{25}{3}\Rightarrow f\left(x\right)\ge-\dfrac{25}{3}\)
Dấu ''='' xảy ra \(\Leftrightarrow3.\left(x-\dfrac{5}{3}\right)^2=0\Rightarrow x-\dfrac{5}{3}=0\Rightarrow x=\dfrac{5}{3}\)
Vậy min f(x)=\(-\dfrac{25}{3}\) khi \(x=\dfrac{5}{3}\)
Câu 1 :
\(a,x^3-6x^2+9x\)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)\)
b;c tự lm nha !!! : câu 2 cx vậy
1.b) x2 - 2xy + 3x - 6y = x2 - 2xy + 3x - 3y x 2
= (x2 - 2xy) + (3x - 3y) x 2
= 2x (x - y) + 3 (x - y) x 2
= (x - y) (2x + 3 x 2)
= (x - y) (2x + 6)
2.
(2x4 - 3x3 + 3x2 - 3x + 1) : (x2 + 1)
2x4 - 3x3 + 3x2 - 3x + 1 / x2 + 1
2x4 + 2x2 / 2x2 - 3x + 1
0 - 3x3 + x2 - 3x + 1 /
- 3x3 - 3x /
0 + x2 + 0 + 1 /
x2 + 1 /
0
=> đây là phép chia hết
Vậy (2x4 - 3x3 + 3x2 - 3x + 1) : (x2 + 1) = 2x2 - 3x + 1
(Sai thì thôi)
a) \(x^3-6x^2+9x\)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)^2\)
b) \(x^2-2xy+3x-6y\)
\(=x\left(x-2y\right)+3\left(x-2y\right)\)
\(=\left(x+3\right)\left(x-2y\right)\)
c) \(x^2-8x+7\)
\(=x^2-7x-x+7\)
\(=x\left(x-7\right)-\left(x-7\right)\)
\(=\left(x-1\right)\left(x-7\right)\)
Câu tính chia mk lm đc nhg ko cs phần mềm trình bày
a) \(A=4x^2-12x+2010\)
\(=4x^2-12x+9+2001\)
\(=\left(2x-3\right)^2+2001\ge2001\)
Dấu "=" xảy ra khi: \(x=\frac{3}{2}\)
Vậy....
A=(x2-x+1)2
Có \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>=\frac{3}{4}\)
=>\(A>=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
MinA=9/16 <=> x=1/2
a) x2 - 2x + 5
= x2 - x - x + 1 + 4
= (x2 - x) - (x - 1) + 4
= x.(x-1) - (x-1) + 4
= (x-1)^2 + 4
Có: (x-1)^2 \(\ge\)0 => (x-1)^2 + 4\(\ge4\)
Dấu ''='' xảy ra khi x-1=0 => x = 1.
Vậy Min của x^2 - 2x + 5 bằng 4 khi x = 1
(24x2y3z2-12x3y2z3+36x2y2z2):(-6x2y2z2)
Vs x=-25: y=-2.5: x=4
Ta có :
\(\left(4-3x\right)^2\ge0\)
\(\Leftrightarrow\left(4-3x\right)^2-21\ge-21\)
Để \(\left(4-3x\right)^2-21\) đạt GTNN thì \(\left(4-3x\right)^2\) nhỏ nhất
Dấu "=" xảy ra khi :
\(\left(4-3x\right)^2=0\)
\(\Leftrightarrow4-3x=0\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\dfrac{4}{3}\)
Vậy GTNN của \(\left(4-3x\right)^2-21\) = -21 khi \(x=\dfrac{4}{3}\)