K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

a)\(x^3+y^3+z^3-3xyz\)

\(=x^3+3x^2y+3xy^2+y^3+z^3-3xyz-3x^2y-3xy^2\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left[\left(x+y\right)+z\right]\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz+2xy\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)\)

23 tháng 11 2016

b) x4 + 4

=x4+4x2+4-4x2

=(x2+2)2-(2x)2

=(x2+2-2x)(x2+2+2x)

c)sai đề

29 tháng 9 2019

a)Ta có :

3x2-3xy-6x-6y=3(x2-xy-2x+2y)

=3[x(x-y)-2(x-y)]

=3(x-y)(x-2)    (đpcm)

2 tháng 11 2017

Ta có: 7x2+8xy+7y2=10 (*)

=>4x2+8xy+4y2+3x2+3y2=10

=>4(x+y)2+3(x2+y2)=10

=>3(x2+y2)=10-4(x+y)2

Vậy A lớn nhất khi (x+y)2=0=>x=-y

Amax=10/3

Áp dụng bất đẳng thức Cosy cho 2 số dương ta có:

A=x2+y22xy,

=> Amin khi x=y

Thay vào (*) ta được:

7x2+8x2+7x2=10

=>22x2=10

=>x2=10/22 

=> y2=10/22

=>Amin=10/22+10/22=10/11.

Vậy Amin=10/3<=> x=-y

       Amax=10/11<=>x=y.

2 tháng 11 2017

k cho mình nhé mọi người

30 tháng 12 2019

Thôi làm thế này đi:3

\(A=-\frac{2xy}{1+xy}=-\frac{2\left(1+xy\right)+2}{1+xy}=\frac{2}{1+xy}-2\)

Áp dụng BĐT Cosi ta có:

\(xy\le\frac{x^2+y^2}{2}=\frac{1}{2}\)

\(\Rightarrow A\ge\frac{2}{1+\frac{1}{2}}-2=-\frac{2}{3}\)

Dấu "=" xảy ra khi \(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)

vậy GTNNA = \(-\frac{2}{3}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)

30 tháng 12 2019

\(A=-\frac{2xy}{1+xy}=-2xy-2\)

Áp dụng BĐT Cosi ta có:

\(2xy\le x^2+y^2=1\)dấu "=" xảy ra khi:

\(\Leftrightarrow\hept{\begin{cases}x^2=y^2\\x^2+y^2=1\end{cases}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\) (thỏa mãn ĐKXĐ vs x,y > 0 )

\(\Rightarrow A\ge-1-2=-3\)

dấu "=" xảy ra khi:

\(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)(thỏa mãn ĐKXĐ vs x,y > 0 )

vậy GTNN \(A=-3\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)

NV
30 tháng 12 2021

Tam giác ABC vuông tại A có AM là trung tuyến ứng với cạnh huyền

\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow BC=2AM=50\left(m\right)\)

a. Áp dụng định lý Pitago:

\(AB=\sqrt{BC^2-AC^2}=30\left(m\right)\)

b. Kẻ \(MH\perp AC\Rightarrow MH||AB\) (cùng vuông góc AC)

Mà M là trung điểm BC \(\Rightarrow MH\) là đường trung bình tam giác ABC

\(\Rightarrow MH=\dfrac{1}{2}AB=15\left(m\right)\)

\(\Rightarrow S_{AMC}=\dfrac{1}{2}MH.AC=\dfrac{1}{2}.15.40=300\left(m^2\right)\)

30 tháng 12 2021

Cảm ơn nhiều ạ ;-;