Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có \(x^2\ge0\Leftrightarrow x^2+2\ge2.\)
\(\frac{1}{x^2+2}\le\frac{1}{2}\) vậy GTLN là \(\frac{1}{2}\)
b) ta có \(2x^2\ge0\Leftrightarrow2x^2+5\ge5\)
\(\frac{1}{2x^2+5}\le\frac{1}{5}\) vậy GTLN là \(\frac{1}{5}\)
c) ta có \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x-1\right)^2+4\ge4\)
\(\frac{8}{\left(x-1\right)^2+4}\le\frac{8}{4}\) vậy GTLN là \(\frac{8}{4}=2\)
Ta có :
\(A=\frac{x^2+y^2+5}{x^2+y^2+3}=\frac{x^2+y^2+3+2}{x^2+y^2+3}=\frac{x^2+y^2+3}{x^2+y^2+3}+\frac{2}{x^2+y^2+3}=1+\frac{2}{x^2+y^2+3}\)
Để A đạt GTLN thì \(\frac{2}{x^2+y^2+3}\) phải đạt GTLN hay \(x^2+y^2+3>0\) và đạt GTNN
Do đó :
\(x^2+y^2+3=1\)
\(\Rightarrow\)\(x^2+y^2=-2\) ( loại vì \(x^2+y^2\ge0\) )
\(x^2+y^2+3=2\)
\(\Rightarrow\)\(x^2+y^2=-1\) ( loại )
\(x^2+y^2+3=3\)
\(\Rightarrow\)\(x^2+y^2=0\)
\(\Rightarrow\)\(\hept{\begin{cases}x^2=0\\y^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
Suy ra :
\(A=\frac{x^2+y^2+5}{x^2+y^2+3}=\frac{0^2+0^2+5}{0^2+0^2+3}=\frac{0+0+5}{0+0+3}=\frac{5}{3}\)
Vậy \(A_{max}=\frac{5}{3}\) khi \(x=y=0\)
Chúc bạn học tốt ~
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
bạn vô đây kham khảo nhé.
https://toanhoc77.wordpress.com/...gtnn-cua-bieu-thuc-ung-dung-7-hang-dang-thuc-lop-8/