Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - 2x + 5
= x2 - x - x + 1 + 4
= (x2 - x) - (x - 1) + 4
= x.(x-1) - (x-1) + 4
= (x-1)^2 + 4
Có: (x-1)^2 \(\ge\)0 => (x-1)^2 + 4\(\ge4\)
Dấu ''='' xảy ra khi x-1=0 => x = 1.
Vậy Min của x^2 - 2x + 5 bằng 4 khi x = 1
\(A=2x-2x^2-5\)
\(A=-2\left(x^2-x\right)-5\)
\(A=-2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}-5\)
\(A=-2\left(x-\frac{1}{2}\right)^2-4\frac{1}{2}\)
Có \(2\left(x-\frac{1}{2}\right)^2\ge0\)với mọi x
=> \(-2\left(x-\frac{1}{2}\right)^2\le0\)với mọi x
=> \(-2\left(x-\frac{1}{2}\right)^2-4\frac{1}{2}\le-4\frac{1}{2}\)với mọi x
=> \(A\le-4\frac{1}{2}\)với mọi x
Dấu "=" xảy ra <=> \(x-\frac{1}{2}=0\)<=> \(x=\frac{1}{2}\)
KL: \(A_{max}=-4\frac{1}{2}\)<=> \(x=\frac{1}{2}\)
a
\(N=x-x^2\)
\(\Leftrightarrow-N=x^2-x\)
\(\Leftrightarrow-N+\frac{1}{4}=x^2-x+\frac{1}{4}\)
\(\Leftrightarrow-N+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
\(\Leftrightarrow-N=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\Rightarrow N_{max}=-\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
\(N=x-x^2\)
\(=-x^2+2.x.\frac{1}{2}-\frac{1}{4}+\frac{1}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(-\left(x-\frac{1}{2}\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le0+\frac{1}{4};\forall x\)
Hay \(N\le\frac{1}{4};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy MAX \(N=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
N = 2x - 2x2 - 5
= -2x2 + 2x - 5
= -2(x2 - x + \(\dfrac{5}{2}\))
= -2(x2 - 2.x.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{9}{4}\))
= -2(x2 - 2.x.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\)) - \(\dfrac{9}{2}\)
= -2(x - \(\dfrac{1}{2}\))2 - \(\dfrac{9}{2}\) \(\le-\dfrac{9}{2}\)
Vậy GTLN của N là \(-\dfrac{9}{2}\) khi x - \(\dfrac{1}{2}\) = 0 \(\Rightarrow\) x = \(\dfrac{1}{2}\).
\(N=2x-2x^2-5\)
\(=-2\left(-x+x^2+\frac{5}{2}\right)\)
\(=-2\left(x^2-x+\frac{5}{2}\right)\)
\(=-2\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{9}{4}\right)\)
\(=-2\left[\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{9}{4}\right]\)
\(=-2\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\)
\(=-2.\left(x-\frac{1}{2}\right)^2-2.\frac{9}{4}\)
\(=-2.\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
Dấu = xảy ra khi:
\(-2\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\)
\(\Rightarrow x=0+\frac{1}{2}=\frac{1}{2}\)
2x^2 hay 2x vậy