K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

\(M=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(2M=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(2M+M=\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\right)\)

\(3M=1-\frac{1}{2^{100}}\)

\(M=\frac{1-\frac{1}{2^{100}}}{3}\)

23 tháng 10 2017

A = \(\frac{1}{2}\)\(-\)\(\frac{1}{2^2}\)\(+\)\(\frac{1}{2^3}\)\(-\)\(\frac{1}{2^4}\)\(+\)........... \(+\)\(\frac{1}{2^{99}}\)\(-\)\(\frac{1}{2^{100}}\)

2A = 1 - \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+.........+ \(\frac{1}{2^{98}}\)\(\frac{1}{2^{99}}\)

2A + A =( 1 - \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+.........+ \(\frac{1}{2^{98}}\)\(\frac{1}{2^{99}}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{2^2}\)\(+\)\(\frac{1}{2^3}\)\(-\)\(\frac{1}{2^4}\)\(+\)........... \(+\)\(\frac{1}{2^{99}}\)\(-\)\(\frac{1}{2^{100}}\)

3A = 1 \(-\) \(\frac{1}{2^{100}}\)

\(\Rightarrow\)A = \(\frac{1-\frac{1}{2^{100}}}{3}\)\(\frac{1}{3}\)

31 tháng 10 2018

Ta có : \(B=\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}\)

\(\Rightarrow2B=1-\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^{99}}\)

\(\Rightarrow2B+B=\left(1-\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^{99}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}\right)\)

\(\Rightarrow3B=1-\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^{99}}+\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}\)

\(\Rightarrow3B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow3B=1-\frac{1}{2^{100}}\)

\(\Rightarrow B=\frac{1-\frac{1}{2^{100}}}{3}\)

30 tháng 3 2017

Ta có 99/1+98/2+97/3+...+1/99=(98/2+1)+(97/3+1)+...+(1/99+1)+1

=100/2+100/3+...+100/99+100/100

=100(1/2+1/3=1/4+1/5+...+1/99+1/100)

Vậy (1/2+1/3+...+1/100)/((99/1+98/2+...+1/99)=1/100

30 tháng 3 2017

xét mẫu số = \(\frac{99}{1}\)+\(\frac{98}{2}\)+....+\(\frac{1}{99}\)

mẫu số = (\(1+\frac{98}{2}\))+(\(1+\frac{97}{3}\))+.......+(\(1+\frac{1}{99}\))

mẫu số = \(\frac{100}{2}\)+\(\frac{100}{3}\)+....+\(\frac{100}{99}\)

mẫu số =100 x (\(\frac{1}{2}\)+\(\frac{1}{3}\)+....+\(\frac{1}{99}\))             (1)

thay (1) vào biểu thức trên

1/2+1/3+1/4+.....+1/100  /   100 x (1/2+1/3+...+1/99)

\(\frac{1}{100}\)

23 tháng 8 2017

Sorry nha cái này tớ chưa học nên hổng biết làm

7 tháng 1 2019

\(\text{Trả lời : }\)

\(\text{Bạn tham khảo nha !}\)

Câu hỏi của Hàn Băng - Toán lớp 9 - Học toán với OnlineMath

https://olm.vn/hoi-dap/detail/204748999615.html

Chúc bạn học tốt !