K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 10 2019

\(A=\frac{2\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\sqrt{5}+2\sqrt{3}}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}=\sqrt{5}+\sqrt{3}+\sqrt{6}-\sqrt{3}\)

\(=\sqrt{5}+\sqrt{6}\)

14 tháng 10 2019

B = \(\frac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\frac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)

=>  \(\frac{2}{\sqrt{2}}B=\frac{8+2\sqrt{7}}{6+\sqrt{8+2\sqrt{7}}}+\frac{8-2\sqrt{7}}{6-\sqrt{8-2\sqrt{7}}}\)

=> \(\frac{2}{\sqrt{2}}B=\frac{\left(\sqrt{7}+1\right)^2}{6+\sqrt{7}+1}+\frac{\left(\sqrt{7}-1\right)^2}{6-\sqrt{7}+1}\)

=> \(\frac{2}{\sqrt{2}}B=\frac{\left(\sqrt{7}+1\right)^2}{\sqrt{7}\left(\sqrt{7}+1\right)}+\frac{\left(\sqrt{7}-1\right)^2}{\sqrt{7}\left(\sqrt{7}-1\right)}\)

=> \(\frac{2}{\sqrt{2}}B=\frac{\sqrt{7}+1}{\sqrt{7}}+\frac{\sqrt{7}-1}{\sqrt{7}}=\frac{2\sqrt{7}}{\sqrt{7}}=2\)

=> B = \(\sqrt{2}\)

NV
29 tháng 6 2019

Câu a kia đề là \(3\sqrt{3x^3-8}\) hay \(3\sqrt{3x^3}-8\)

b/ \(x=\sqrt[3]{5\sqrt{6}+5}-\sqrt[3]{5\sqrt{6}-5}\)

\(\Rightarrow x^3=10-3x\left(\sqrt[3]{\left(5\sqrt{6}+5\right)\left(5\sqrt{6}-5\right)}\right)=10-15x\)

\(\Leftrightarrow x^3+15x=10\)

29 tháng 6 2019

3\(\sqrt{3x^3}-8\) nhé , mình ghi nhầm .

1 tháng 5 2018

gyhhunjyvjvu87r6t797787o809988 809

1 tháng 5 2018

Xét \(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{k+1}}=\frac{1}{\sqrt{k\left(k+1\right)\left(\sqrt{k}+\sqrt{k+1}\right)}}\)

                                                   \(=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(k+1-k\right)}\)

                                                      \(=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)

Ta có: B=\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

             \(=1-\frac{1}{10}=\frac{9}{10}\)

21 tháng 9 2015

Bài này chắc tác giả đánh sai tử thức của phân thức cuối cùng, biểu thức B phải là  \(B=\frac{1}{C}\)  trong đó \(C=\left(\frac{\sqrt{x}+3}{x+\sqrt{x}+1}-\frac{\sqrt{x}-3}{x\sqrt{x}-1}\right)\cdot\frac{x\sqrt{x}-\sqrt{x}+x^2-1}{\sqrt{x}}\)
Ta có \(C=\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}-\frac{\left(\sqrt{x}-3\right)}{x\sqrt{x}-1}\right)\cdot\frac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{x+\sqrt{x}}{x\sqrt{x}-1}\cdot\frac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\left(\sqrt{x}+1\right)^2\)

Thành thử ta được \(C=\left(\sqrt{x}+1\right)^2\)

 Ta có \(x=98+20\sqrt{6}=\left(5\sqrt{2}+4\sqrt{3}\right)^2\to\sqrt{x}=5\sqrt{2}+4\sqrt{3}\to\)

hay \(C=\left(\sqrt{x}+1\right)^2=x+2\sqrt{x}+1=99+20\sqrt{6}+2\left(5\sqrt{2}+4\sqrt{3}\right)\)

\(=99+20\sqrt{6}+10\sqrt{2}+8\sqrt{3}\to B=\frac{1}{C}=\frac{1}{99+20\sqrt{6}+10\sqrt{2}+8\sqrt{3}}\)