Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Mik nghĩ là............
câu 1 ~ 2011
câu 2 ~ -4
Sai thì cho mik xin lũi nhó
Bài 1:
a) \(B=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{61.63}-\frac{2}{63.65}\)
\(B=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{61.63}+\frac{2}{63.65}\right)\)
\(B=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{61}-\frac{1}{63}+\frac{1}{63}-\frac{1}{65}\right)\)
\(B=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)
\(B=1-\frac{62}{195}\)
\(B=\frac{133}{195}\)
b) \(C=1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)
\(C=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)
\(C=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(C=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)
\(C=1-\frac{1}{5}.\frac{19}{100}\)
\(C=1-\frac{19}{500}\)
\(C=\frac{481}{500}\)
bài 2 thì bn lm như bn Phùng Minh Quân nha!
Câu 1 : mình ko hiểu đề bài cho lắm ~.~
Câu 2 :
Ta có :
\(\left|\frac{1}{2}-x\right|\ge0\)
\(\Rightarrow\)\(A=10+\left|\frac{1}{2}-x\right|\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|\frac{1}{2}-x\right|=0\)
\(\Leftrightarrow\)\(\frac{1}{2}-x=0\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(A\) là \(10\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
a: Khi x=-2 thì \(M=3-\left(-2-1\right)^2=3-9=-6\)
Khi x=0 thì \(M=3-\left(0-1\right)^2=2\)
Khi x=3 thì \(M=3-\left(3-1\right)^2=3-2^2=-1\)
b: Để M=6 thì \(3-\left(x-1\right)^2=6\)
\(\Leftrightarrow\left(x-1\right)^2=-3\)(loại)
c: \(M=-\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
a, Thay x=-2 vào M ta có:
\(M=3-\left(-2-1\right)^2=3-\left(-3\right)^2=3-9=-6\)
Thay x=0 vào M ta có:
\(M=3-\left(0-1\right)^2=3-\left(-1\right)^2=3-1=2\)
Thay x=3 vào M ta có:
\(M=3-\left(3-1\right)^2=3-2^2=3-4=-1\)
b, Để M=6 thì:
\(3-\left(x-1\right)^2=6\\ \Leftrightarrow\left(x-1\right)^2=-3\left(vô.lí\right)\)
c, Ta có: \(\left(x-1\right)^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
\(\Rightarrow M=3-\left(x-1\right)^2\le3\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Vậy \(M_{max}=3\Leftrightarrow x=1\)
#)Giải : Gọi Tổng trên là A
A = | x-2 | + 1
Vì tìm giá trị nhỏ nhất của A => A = 0
0 = | x-2 | + 1
0 - 1 = | x-2 |
-1 = | x-2 |
-1 + 2 = x
1 = x
Vậy : giá trị nhỏ nhất của A = 0 khi x = 1
#~Will~be~Pens~#
Hoàng Nguyên Hiếu có vẻ bạn chưa hiểu gì về định nghĩa dấu giá trị tuyệt đổi cả.Bạn có thể thay x = 1 vào để kiểm tra bạn làm đúng hay sai nhé!
Lời giải
Gọi biểu thức trên là M.
Ta luôn có; \(\left|a\right|\ge0\forall a\) (dấu "=" xảy ra khi a = 0)
Suy ra \(\left|x-2\right|\ge0\forall x\) (dấu "=" xảy ra khi x - 2 = 0 tức x = 2)
Suy ra \(M=\left|x-2\right|+1\ge0+1=1\forall x\)
Dấu "=" xảy ra khi x = 2.