\(B=\frac{1}{x^2-6x+11}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2020

câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được

2. xét x^2- 6x + 10

= X^2 -6x +9 +1

=(x^2 -3 )^2 +1

Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R

=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R

=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)

=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R

Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0

=> x-3 = 0

=> x=3

Vậy giá tị lớn nhất của P là 1 đạt được khi x=3

25 tháng 12 2018

\(P=\frac{12x^2-6x+4}{x^2+1}=\frac{\left(9x^2-6x+1\right)+3\left(x^2+1\right)}{x^2+1}=\frac{\left(3x-1\right)^2}{x^2+1}+3\ge3\forall x\)

Dấu "=" xảy ra khi: \(3x-1=0\Rightarrow x=\frac{1}{3}\)

Vậy \(P_{min}=3\Leftrightarrow x=\frac{1}{3}\)

28 tháng 12 2017

\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)

      \(=3+\frac{1}{x^2+2x+3}\)

Lại có: \(x^2+2x+3\)

          \(=\left(x+1\right)^2+2\ge2\)

\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu = xảy ra khi x=-1

P2 tương tự

31 tháng 12 2018

M xác định

\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x^2-x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\left(x-1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne0;x\ne1\end{cases}}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

Vậy ĐKXĐ của M là \(\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

\(M=\frac{3}{x-1}+\frac{1}{x^2-x}=\frac{3}{x-1}+\frac{1}{x\left(x-1\right)}=\frac{3x}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}=\frac{3x+1}{x\left(x-1\right)}\)

Thay x=5 ta có: 

\(M=\frac{3.5+1}{5\left(5-1\right)}=\frac{15+1}{5.4}=\frac{16}{20}=\frac{4}{5}\)

Vậy \(M=5\)tại  x=5

31 tháng 12 2018

\(M=0\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=0\Leftrightarrow3x+1=0\Leftrightarrow x=-\frac{1}{3}\)( thỏa mãn đkxđ)

Vậy với \(x=-\frac{1}{3}\)thì \(M=0\)

\(M=-1\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=-1\Leftrightarrow3x+1=-x^2+x\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy với \(x=-1\)thì \(M=-1\)

12 tháng 5 2019

C1 : 

\(B=\frac{4\left(x^2+x+1\right)}{4\left(x^2+2x+1\right)}=\frac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\frac{x^2-2x+1}{4\left(x^2+2x+1\right)}=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x^2+2x+1\right)}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

C2 : 

\(B=\frac{x^2+x+1}{x^2+2x+1}\)\(\Leftrightarrow\)\(Bx^2-x^2+2Bx-x+B-1=0\)

\(\Leftrightarrow\)\(\left(B-1\right)x^2+\left(2B-1\right)x+\left(B-1\right)=0\)

+) Nếu \(B=1\) thì \(x=0\)

+) Nếu \(B\ne1\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta\ge0\)

                                                        \(\Leftrightarrow\)\(\left(2B-1\right)^2-4\left(B-1\right)\left(B-1\right)\ge0\)

                                                        \(\Leftrightarrow\)\(4B^2-4B+1-4B^2+8B-4\ge0\)

                                                        \(\Leftrightarrow\)\(4B-3\ge0\)

                                                        \(\Leftrightarrow\)\(B\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

a) \(A=x^2-6x+11\)

\(\Rightarrow A=x^2-6x+9+2\)

\(\Rightarrow A=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = 3

Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)

b) \(B=2x^2+10x-1\)

\(\Rightarrow B=2\left(x^2+5\right)-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)

Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)

\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)

Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)

c) \(C=5x-x^2\)

\(\Rightarrow C=-\left(x^2-5x\right)\)

\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)

Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)

Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)

18 tháng 3 2018

\(A=\frac{2x^2-6x+5}{x^2-2x+1}=\frac{x^2-4x+4+x^2-2x+1}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2+\left(x-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\ge1\)

\(\Rightarrow A\ge1\).Nên GTNN của \(A=1\) đạt được khi \(x=2\)

20 tháng 3 2018

dòng thứ 2 ko hiểu