K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Ta có: \(\left|x\right|\ge x\forall x\)

=> \(A=\left|x+1\right|+4\ge4\forall x\)

Dấu ''='' xảy ra khi \(\left|x+1\right|=0\)

                                  \(x+1=0\)

                                  \(x=-1\)

Vậy GTNN của A là 4 khi \(x=-1\)

T i c k cho mình nha ^^

29 tháng 7 2017

thank, kết bạn với mình nha!

Giải:

A=|x-2|+|y+5|-15

Xét thấy: |x-2|+|y+5| > hoặc = 0 với mọi x

=>|x-2|+|y+5|-15 > hoặc = 0-15

          A > hoặc = -15

A nhỏ nhất = -15 khi và chỉ khi:

|x-2|+|y+5|=0

=> x-2=0 và y+5=0

        x=2 và y=-5

Vậy (x;y)=(2;-5)

Chúc bạn học tốt!

à quên cái dòng ''xét thấy'' là với mọi x và y nha bạn, mk quên ghi đấy!khocroi

2 tháng 11 2023

A = |\(x\) + 19| + 1980 

|\(x\) + 19| ≥ 0 \(\forall\) \(x\)

|\(x\) + 19| + 1980 ≥ 1980 ∀ \(x\)

A ≥ 1980 dấu bằng xảy khi \(x\) + 19 = 0 hay \(x\) = -19

Kết luận A đạt giá trị nhỏ nhất là 1980 khi \(x\) = -19

2 tháng 11 2023

B = |\(x\) + 20| + |y - 21| + 2020

 |\(x\) + 20| ≥ 0 ∀ \(x\); |y - 21| ≥ 0 ∀ y

B = |\(x\) + 20| + |y - 21| + 2020 ≥ 2020

B ≥ 2020 dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x+20=0\\y-21=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-20\\y=21\end{matrix}\right.\)

Bmin = 2020 khi (\(x;y\)) = (-20; 21)