K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2022

4

26 tháng 4 2022

Thay \(x=2\) vào đa thức \(P\left(x\right)\), ta được:

\(P\left(2\right)=3.2^5-2.2^4-2.2^5-2.2^2-2+3.2^2+2\)

\(=3.32-2.16-2.32-2.4-2+3.4+2\)

\(=96-32-64-8-2+12+2\)

\(=4\)

25 tháng 6 2019

a ,  x^2 - 2x - (3x^2 - 5x + 4) + (2x^2 - 3x + 7) 

= x^2 - 2x - 3x^2 + 5x - 4 + 2x^2 - 3x + 7 

= (x^2 - 3x^2 + 2x^2) + (-2x + 5x - 3x) + (-4 + 7) 

=  3 

Vậy GTBT ko phụ thuộc vào biến 

b,  (2x^3 - 4x^2 + x - 1) - (5 - x^2 + 2x^3) + 3x^2 - x 

= 2x^3 - 4x^2 + x - 1 - 5 + x^2 - 2x^3 + 3x^2 - x 

= (2x^3 - 2x^3) + (-4x^2 + x^2 + 3x^2 ) + (x - x) + (-1 - 5) 

= -6  

Vậy GTBT ko phụ thuộc vào biến 

a) x2 -2x -( 3x2 -5x +4 )+(2x2 - 3x +7 )

= x2 -2x - 3x2 + 5x - 4 + 2x2 - 3x +7 

= 3

Vậy biểu thức không phụ thuộc vào biến.

b) ( 2x3 -4x2 +x - 1)- (5 - x2 +2x3 ) +3x2 - x 

 =  2x3 -4x2 +x - 1 - 5 + x2 - 2x3  +3x2 - x

= -1 - 5 = -6

Vậy biểu thức không phụ thuộc vào biến x 

16 tháng 4 2017

x2-1=0 <=> x2=1 <=> x=-1 hoặc x=1

x2=3x <=> x2-3x=0 <=> x(x-3)=0 <=> x=0 hoặc x-3=0 <=> x=0 hoặc x=3

Rồi bạn tự thay x vào mà tính thôi nhé 

16 tháng 4 2017

Tính giá trị biểu thức:

d) D=\(\frac{3x-2y}{x-3y}\)với \(\frac{x}{y}=\frac{10}{3}\)

4 tháng 5 2018

a) ta có: \(A_{\left(x\right)}=2x.\left(x+3\right)-3x^2.\left(x+2\right)+x.\left(3x^2+4x-6\right)\)

           \(A_{\left(x\right)}=2x^2+6x-3x^3-6x^2+3x^3+4x^2-6x\)

         \(A_{\left(x\right)}=\left(2x^2-6x^2+4x^2\right)+\left(6x-6x\right)+\left(3x^3-3x^3\right)\)

       \(A_{\left(x\right)}=0\)

=> A(x) không phụ thuộc vào giá trị của x

phần b bn lm tương tự nha! 

13 tháng 7 2015

2a.  x=11 hoac x=-4

b.   x=0,6 hoặc x>=5/

13 tháng 7 2015

Các bạn trình bày hẳn cách giải ra dùm mình nha, bài 1 với câu b bài 2 thôi, còn câu a bài 2 mình làm được rồi
 

5 tháng 5 2019

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+16\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

b

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+16\)

\(-\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=6x^5-6x^4+x^2+4x+\frac{63}{4}\)

c.

Thay x=-1 vào P(x) thấy đúng còn Q(x) thấy nó khác 0

d

\(P\left(x\right)-Q\left(x\right)=6\cdot\left(-1\right)^5-6\cdot\left(-1\right)^4+\left(-1\right)^2+4\left(-1\right)+\frac{63}{4}\)

\(=-6-6+1-4+\frac{63}{4}\)

Tự tính nốt

a,

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+16\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

1: \(M\left(x\right)=A\left(x\right)-2B\left(x\right)+C\left(x\right)\)

\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+C\left(x\right)\)

\(=4x^4-4x^3-x^2+8x-4+x^4+4x^3+3x^2-8x+\dfrac{67}{16}\)

\(=5x^4+2x^2+\dfrac{3}{16}\)

2: \(M\left(-0.5\right)=5\cdot\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+\dfrac{3}{16}=1\)