K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8

\(\dfrac{2023}{2016}=1+\dfrac{7}{2016}\)

\(\dfrac{2016}{2009}=1+\dfrac{7}{2009}\)

Vì: \(\dfrac{7}{2016}< \dfrac{7}{2009}\) nên \(\dfrac{2023}{2016}< \dfrac{2016}{2009}\)

4
456
CTVHS
16 tháng 8

\(\dfrac{2023}{2016}\) và \(\dfrac{2016}{2009}\)

Ta có:

\(\dfrac{2023}{2016}=1+\dfrac{7}{2016}\)

\(\dfrac{2016}{2009}=1+\dfrac{7}{2009}\)

Vì \(\dfrac{7}{2016}< \dfrac{7}{2009}\) nên

\(\Rightarrow1+\dfrac{7}{2016}< 1+\dfrac{7}{2009}\)

\(\Rightarrow\dfrac{2023}{2016}< \dfrac{2016}{2009}\)

Vậy \(\dfrac{2023}{2016}< \dfrac{2016}{2009}\)

Giải:

a)Ta có:

C=1957/2007=1957+50-50/2007

                      =2007-50/2007

                      =2007/2007-50/2007

                      =1-50/2007

D=1935/1985=1935+50-50/1985

                      =1985-50/1985

                      =1985/1985-50/1985

                      =1-50/1985

Vì 50/2007<50/1985 nên -50/2007>-50/1985

⇒C>D

b)Ta có:

A=20162016+2/20162016-1

A=20162016-1+3/20162016-1

A=20162016-1/20162016-1+3/20162016-1

A=1+3/20162016-1

Tương tự: B=20162016/20162016-3

                 B=1+3/20162016-3

Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3

⇒A<B

Chúc bạn học tốt!

 

 

Làm tiếp:

c)Ta có:

M=102018+1/102019+1

10M=10.(102018+1)/202019+1

10M=102019+10/102019+1

10M=102019+1+9/102019+1

10M=102019+1/102019+1 + 9/102019+1

10M=1+9/102019+1

Tương tự:

N=102019+1/102020+1

10N=1+9/102020+1

Vì 9/102019+1>9/102020+1 nên 10M>10N

⇒M>N

Chúc bạn học tốt!

10 tháng 4 2017

Ta có:
\(S=\dfrac{2.8}{1.9}.\dfrac{3.9}{2.10}.\dfrac{4.10}{3.11}...\dfrac{42.48}{41.49}\)
\(S=\dfrac{2.3.4...42}{1.2.3...41}.\dfrac{8.9.10...48}{9.10.11...49}\)
\(S=\dfrac{42}{1}.\dfrac{8}{49}\)
\(S=\dfrac{48}{7}\)

10 tháng 4 2017

Giải:

\(S=\dfrac{16}{9}.\dfrac{27}{20}.\dfrac{40}{33}.\dfrac{55}{48}.....\dfrac{2016}{2009}.\)

\(=\dfrac{2.8}{1.9}.\dfrac{3.9}{2.10}.\dfrac{4.10}{3.11}.\dfrac{5.11}{4.12}.....\dfrac{42.48}{41.49}.\)

\(=\dfrac{\left(2.3.4.5.....42\right)\left(8.9.10.11.....48\right)}{\left(1.2.3.4.....41\right)\left(9.10.11.12.....49\right)}.\)

\(=\dfrac{2.3.4.5.....42}{1.2.3.4.....41}.\dfrac{8.9.10.11.....48}{9.10.11.12.....49}.\)

\(=42.\dfrac{8}{49}.\)

\(=\dfrac{42.8}{49}.\)

\(=\dfrac{6.8}{7}.\)

\(=\dfrac{48}{7}.\)

Vậy \(S=\dfrac{48}{7}.\)

CHÚC BN HỌC TỐT!!! ^ - ^

Đừng quên bình luận nếu bài mik sai nhé!!!banhbanhquahaha

Còn nếu bài mik đúng thì nhớ tick cho mik để mik lấy SP nha!!!haleuleuoaoa

\(10A=\dfrac{10^{2015}+2016+9\cdot2016}{10^{2015}+2016}=1+\dfrac{18144}{10^{2015}+2016}\)

\(10B=\dfrac{10^{2016}+9+18144}{10^{2016}+2016}=1+\dfrac{18144}{10^{2016}+2016}\)

mà \(\dfrac{18144}{10^{2015}+2016}>\dfrac{18144}{10^{2016}+2016}\)

nên A>B

17 tháng 4 2017

đặt phân số trên là A

tử là

(1+2015/2)+...+(1+2/2015)+(1+1/2016)+1

=2017/2+....+2017/2015+2017/2016+2017/2017

=2017.(1/2+...+1/2015+1/2016+1/2017)

=>A=\(\dfrac{2017.\left(\dfrac{1}{2}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

Vậy A=2017

15 tháng 3 2018

\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2013+2013}=\dfrac{1}{2}\)

Tương tự cộng theo vế suy ra đpcm

16 tháng 3 2018

tệ quá bạn ơi

18 tháng 3 2018

\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)

22 tháng 4 2017

1. Ta có: \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\left(m\in Z\right)\)

\(B=\dfrac{2016^{2016}}{2016^{2016}-3}>\dfrac{2016^{2016}+2}{2016^{2016}-3+2}=\dfrac{2016^{2016}+2}{2016^{2016}-1}=A\)

Vậy A > B

2. \(\dfrac{1}{2016.2015}+\dfrac{1}{2015.2014}+\dfrac{1}{2014.2013}+...+\dfrac{1}{1.2}\)

= \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)

= \(1-\dfrac{1}{2016}\)

=\(\dfrac{2015}{2016}\)

20 tháng 4 2018

Phân tích từ B ra, ta có:

B=\(\dfrac{2015+2016}{2016+2017}\)=\(\dfrac{2015}{2016+2017}\)+\(\dfrac{2016}{2016+2017}\)

\(\dfrac{2015}{2016+2017}\)<\(\dfrac{2015}{2016}\) ; \(\dfrac{2016}{2016+2017}\) < \(\dfrac{2016}{2017}\)

=> B < A