Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: A=4x^2+12x+9-4x^2+4x-1-6x=10x+8
Khi x=201 thì A=10*201+8=2018
2: B=4x^2+20x+25-4x^2+12=20x+37
Khi x=1/20 thì B=1+37=38
1, \(A=\left(2x+3\right)^2-\left(2x-1\right)^2-6x\)
\(A=\left[\left(2x+3\right)+\left(2x-1\right)\right]\left[\left(2x+3\right)-\left(2x-1\right)\right]-6x\)
\(A=\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)-6x\)
\(A=4\left(4x+2\right)-6x\)
\(A=16x+8-6x\)
\(A=10x+8\)
Thay \(x=201\) vào A ta có:
\(A=10\cdot201+8=2010+8=2018\)
Vậy: ....
2, \(B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)
\(B=\left(2x+5\right)^2-4\left(x^2-9\right)\)
\(B=4x^2+20x+25-4x^2+36\)
\(B=20x+61\)
Thay \(x=\dfrac{1}{20}\) vào B ta có:
\(B=20\cdot\dfrac{1}{20}+61=1+61=62\)
Vậy: ...
a) \(\left(x+5\right)^2-\left(x-5\right)^2-20x+2\)
\(=x^2+10x+25-x^2+10x-25-20x+2\)
\(=2\) không phụ thuộc vào \(x\)
b) \(\left(x+3\right)\left(x-5\right)-\left(x-1\right)^2\)
\(=x^2-2x-15-x^2+2x-1\)
\(=-16\) không phụ thuộc vào \(x\)
c) \(\left(3x+2\right)\left(x-2\right)-x\left(3x-5\right)+8\)
\(=3x^2-4x-4-3x^2+5x+8\)
\(=x+8\) câu này đề sai.
d) \(2.\left(3x+1\right)\left(2x+5\right)-6x.\left(2x+4\right)-10\left(x-1\right)\)
\(=2.\left(6x^2+17x+5\right)-\left(12x^2+24x\right)-10x+10\)
\(=12x^2+34x+10-12x^2-24x-10x+10\)
\(=20\) không phụ thuộc vào \(x\)
a) ( x + 5 )2 - ( x - 5 )2 - 20x + 2
= x2 + 10x + 25 - ( x2 - 10x + 25 ) - 20x + 2
= x2 + 10x + 25 - x2 + 10x - 25 - 20x + 2
= 2 ( đpcm )
b) ( x + 3 )( x - 5 ) - ( x - 1 )2
= x2 - 2x - 15 - ( x2 - 2x + 1 )
= x2 - 2x - 15 - x2 + 2x - 1
= -16 ( đpcm )
c) ( 3x + 2 )( x - 2 ) - x( 3x - 5 ) + 8
= 3x2 - 4x - 4 - 3x2 + 5x + 8
= x + 4 ( lỗi đề )
d) 2( 3x + 1 )( 2x + 5 ) - 6x( 2x + 4 ) - 10( x - 1 )
= 2( 6x2 + 17x + 5 ) - 12x2 - 24x - 10x + 10
= 12x2 + 34x + 10 - 12x2 - 24x - 10x + 10
= 20 ( đpcm )
\(A=\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+11\right)}\)
\(=\frac{1+1+1+1+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)\left(x+11\right)}\)
\(=\frac{5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)\left(x+11\right)}\)
\(=\frac{5}{\left(x+1\right)\left(x+11\right)\left(x+3\right)\left(x+9\right)\left(x+5\right)\left(x+7\right)}\)
\(=\frac{5}{\left(x^2+11x+x+11\right)\left(x^2+9x+3x+27\right)\left(x^2+7x+5x+35\right)}\)
\(=\frac{5}{\left(x^2+12x+11\right)\left(x^2+12x+27\right)\left(x^2+12x+35\right)}\)
A=\(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+11}\)
Rút gọn hết đi ta có \(\frac{1}{x+1}-\frac{1}{x+11}\)=\(\frac{x+11}{\left(x+1\right).\left(x+11\right)}-\frac{x+1}{\left(x+1\right).\left(x+11\right)}\)
A=\(\frac{x+11-x-1}{\left(x+1\right).\left(x+11\right)}\)
A=\(\frac{10}{x^2+12x+11}\)
\(3,x=\dfrac{1}{2},y=-1\)
\(\Rightarrow C=\dfrac{1}{2}\left[\left(\dfrac{1}{2}\right)^2+1\right]-\left(\dfrac{1}{2}\right)^2\left(\dfrac{1}{2}-1\right)-1\left[\left(\dfrac{1}{2}\right)^2-\dfrac{1}{2}\right]\)
\(\Rightarrow C=\dfrac{1}{2}\left(\dfrac{1}{4}+1\right)-\dfrac{1}{4}\left(-\dfrac{1}{2}\right)-\left(\dfrac{1}{4}-\dfrac{1}{2}\right)\)
\(\Rightarrow C=\dfrac{1}{2}.\dfrac{5}{4}+\dfrac{1}{8}-\left(-\dfrac{1}{4}\right)\)
\(\Rightarrow C=\dfrac{5}{8}+\dfrac{1}{8}+\dfrac{1}{4}\)
\(\Rightarrow C=1\)
\(4,x=\dfrac{1}{2},y=-100\)
\(\Rightarrow D=\dfrac{1}{2}\left[\left(\dfrac{1}{2}\right)^2+100\right]-\left(\dfrac{1}{2}\right)^2\left(\dfrac{1}{2}-100\right)-100\left[\left(\dfrac{1}{2}\right)^2-\dfrac{1}{2}\right]\)
\(\Rightarrow D=\dfrac{1}{2}\left(\dfrac{1}{4}+100\right)-\dfrac{1}{4}\left(-\dfrac{199}{2}\right)-100\left(\dfrac{1}{4}-\dfrac{1}{2}\right)\)
\(\Rightarrow D=\dfrac{1}{2}.\dfrac{401}{4}+\dfrac{199}{8}-100.\left(-\dfrac{1}{4}\right)\)
\(\Rightarrow D=\dfrac{401}{8}+\dfrac{199}{8}+25\)
\(\Rightarrow D=100\)
3: C=x^3-xy-x^3-x^2y+x^2y-xy
=-2xy=-2*1/2*(-1)=1
4: D=x^3-xy-x^3-x^2y+x^2y-xy
=-2xy
=-2*1/2*(-100)=100
Chắc là \(q\left(x\right)=x^2-4????\)
\(f\left(2\right)=2^5+2^2+1=37\) ; \(f\left(-2\right)=-27\)
Do \(f\left(x\right)\) có 5 nghiệm nên f(x) có dạng:
\(f\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)
\(\Rightarrow f\left(2\right)=\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\left(2-x_5\right)=37\)
\(f\left(-2\right)=\left(-2-x_1\right)\left(-2-x_2\right)\left(-2-x_3\right)\left(-2-x_4\right)\left(-2-x_5\right)=-27\)
\(\Rightarrow\left(2+x_1\right)\left(2+x_2\right)\left(2+x_3\right)\left(2+x_4\right)\left(2+x_5\right)=27\)
\(A=\left(x_1^2-4\right)\left(x^2_2-4\right)\left(x_3^2-4\right)\left(x_4^2-4\right)\left(x^2_5-4\right)\)
\(A=-\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\left(2-x_5\right)\left(2+x_1\right)\left(2+x_2\right)\left(2+x_3\right)\left(2+x_4\right)\left(2+x_5\right)\)
\(A=-37.27=-999\)
a)\(P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x=0\)
Vậy g/t P không phụ thuộc vào biến.
b)\(Q=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)=-6x^2-2+6x^2-6=-8\)
Vậy g/t Q không phụ thuộc vào biến.
b) Ta có: \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)
\(=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6\left(x^2-1\right)\)
\(=-2\left(3x^2+1\right)+6\left(x^2-1\right)\)
\(=-6x^2-2+6x^2-6\)
=-8
Bài làm:
a) \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)
\(=3x^2+15x-3x^2+3x-18x+18\)
\(=18\)=> không phụ thuộc GT biến
b) \(2x\left(x+3\right)-\left(x-5\right)\left(7+2x\right)\)
\(=2x^2+6x-7x-2x^2+35+10x\)
\(=9x+35\)=> có phụ thuộc GT biến
c) \(5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x\)
\(=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x\)
\(=0\)=> không phụ thuộc GT biến
cho mk hỏi tại sao chỗ (3x+18)(x-1) bạn lại ra được 3x2+3x -18x+18
thay X =5 ta có:
\(\left(5-1\right)\left(5-2\right)\left(5-3\right)+\left(5-1\right)\left(5-2\right)\left(5-1\right)\)
\(\Leftrightarrow4.3.2+4.3+4\)
\(\Leftrightarrow24+12+4\)
\(\Leftrightarrow12+4=16\)
(x-1).(x-2).(x-3) + (x-1).(x-2) + (x-1)
= (x-1).[(x-2).(x-3) + x-2 + 1]
= (x-1).[ x2 - 3x -2x + 6 + x - 2 + 1]
= (x-1).[ x2 -4x + 5]
thay x = 5 vào biểu thức
...