\(B=x^3+2x^2+x^2y+xy+2x+y+4\)

                           tại 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

ta có: x + y + 1 = 0 

=> x + y = 0 - 1 = -1

B = x3 + 2x2 + x2y + xy + 2x + y + 4

B = x2.(x + 2 + y) + xy + 2x + y + 4 

B = x2 + xy + 2x + y + 4

B = x.(x + y + 2) + y + 4

B = x + y + 4

B = 3

Tui chẳng nghĩ gì về số cúp cả

7 tháng 4 2016

trả lời đi t đag cần gấp lắm

20 tháng 3 2018

a, \(A=x^3-x^2y+3x^2-xy+y^2-4y+x+2\)

\(=x^3-x^2y+3x^2-\left(xy-y^2+3y\right)-y+x+3-1\)

\(=x^2\left(x-y+3\right)-y\left(x-y+3\right)+\left(x-y+3\right)-1\)

Thay x-y+3=0 vào A

\(A=x^2.0-y.0+0-1=-1\)

b, \(B=x^3-2x^2y+3x^2+xy^2-3xy-2y+2x+4\)

\(=x^3-x^2y-x^2y+3x^2+xy^2-3xy-2y+2x+4\)

\(=x^3-x^2y+3x^2-x^2y+xy^2-3xy+2x-2y+6-2\)

\(=x^2\left(x-y+3\right)-xy\left(x-y+3\right)+2\left(x-y+3\right)-2\)

Thay x-y+3=0 vào B

\(B=x^2.0-xy.0+2.0-2=-2\)

29 tháng 5 2017

a) Thế x = 1, y = -1, z = 3 vào biểu thức đã cho:

\(\left[1^2.\left(-1\right)-2.1-2.3\right]1.\left(-1\right)\)

= -9 . (-1)

= 9

Vậy biểu thức có giá trị bằng 9 tại x = 1, y = -1, z = 3.

b) Thế x = 1, y = -1, z = 3 vào biểu thức đã cho:

\(1.\left(-1\right).3+\dfrac{2.1^2.\left(-1\right)}{\left(-1\right)^2+1}\)

= -3 + \(\left(-1\right)\)

= -4

Vậy biểu thức có giá trị bằng -4 tại x = 1, y = -1, z = 3.

26 tháng 7 2020

\(H=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)

\(=(x^3+x^2y+x^2)+(-xy^2-y^3-y^2)+(2x+2y+2)+1\)  

\(=x^2\left(x+y+1\right)-y^2\left(x+y+1\right)+2\left(x+y+1\right)+1\)

Thay \(x+y+1=0\) vào biểu thức trên , ta có :

\(H=x^2.0-y^2.0+2.0+1\)

\(H=0-0+0+1\)

\(H=1\)

Vậy \(H=1\)

Học tốt

26 tháng 7 2020

Cảm ơn nhiều ạ

17 tháng 11 2015

Do \(x+y-2=0\Leftrightarrow x+y=2\Leftrightarrow x-2=-y\)

\(N=x^2\left(x-2\right)-xy^2+2xy+2\left(x+y\right)-2\)

\(=-x^2y-xy^2+2xy+2.2-2=-xy\left(x+y\right)+2xy+2=-2xy+2xy+2=2\)

17 tháng 11 2015

khó nhỉ.         

20 tháng 2 2019

\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)\)

\(\Rightarrow A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)\)

\(\Rightarrow A=0\) ( do x+y = 0 )