Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=x^3-x^2y+3x^2-xy+y^2-4y+x+2\)
\(=x^3-x^2y+3x^2-\left(xy-y^2+3y\right)-y+x+3-1\)
\(=x^2\left(x-y+3\right)-y\left(x-y+3\right)+\left(x-y+3\right)-1\)
Thay x-y+3=0 vào A
\(A=x^2.0-y.0+0-1=-1\)
b, \(B=x^3-2x^2y+3x^2+xy^2-3xy-2y+2x+4\)
\(=x^3-x^2y-x^2y+3x^2+xy^2-3xy-2y+2x+4\)
\(=x^3-x^2y+3x^2-x^2y+xy^2-3xy+2x-2y+6-2\)
\(=x^2\left(x-y+3\right)-xy\left(x-y+3\right)+2\left(x-y+3\right)-2\)
Thay x-y+3=0 vào B
\(B=x^2.0-xy.0+2.0-2=-2\)
a) Thế x = 1, y = -1, z = 3 vào biểu thức đã cho:
\(\left[1^2.\left(-1\right)-2.1-2.3\right]1.\left(-1\right)\)
= -9 . (-1)
= 9
Vậy biểu thức có giá trị bằng 9 tại x = 1, y = -1, z = 3.
b) Thế x = 1, y = -1, z = 3 vào biểu thức đã cho:
\(1.\left(-1\right).3+\dfrac{2.1^2.\left(-1\right)}{\left(-1\right)^2+1}\)
= -3 + \(\left(-1\right)\)
= -4
Vậy biểu thức có giá trị bằng -4 tại x = 1, y = -1, z = 3.
\(H=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
\(=(x^3+x^2y+x^2)+(-xy^2-y^3-y^2)+(2x+2y+2)+1\)
\(=x^2\left(x+y+1\right)-y^2\left(x+y+1\right)+2\left(x+y+1\right)+1\)
Thay \(x+y+1=0\) vào biểu thức trên , ta có :
\(H=x^2.0-y^2.0+2.0+1\)
\(H=0-0+0+1\)
\(H=1\)
Vậy \(H=1\)
Học tốt
Do \(x+y-2=0\Leftrightarrow x+y=2\Leftrightarrow x-2=-y\)
\(N=x^2\left(x-2\right)-xy^2+2xy+2\left(x+y\right)-2\)
\(=-x^2y-xy^2+2xy+2.2-2=-xy\left(x+y\right)+2xy+2=-2xy+2xy+2=2\)
ta có: x + y + 1 = 0
=> x + y = 0 - 1 = -1
B = x3 + 2x2 + x2y + xy + 2x + y + 4
B = x2.(x + 2 + y) + xy + 2x + y + 4
B = x2 + xy + 2x + y + 4
B = x.(x + y + 2) + y + 4
B = x + y + 4
B = 3