K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

Đặt  \(ab=x;\)\(bc=y;\)\(ca=z\)

Khi đó:   \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

<=>  \(x^3+y^3+z^3=3xyz\)

<=>  \(x^3+y^3+z^3-3xyz=0\)

<=>  \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

Nếu:  \(x+y+z=0\)thì:  \(ab+bc+ca=0\)

\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\)

\(=\frac{\left(a+b\right)\left(b+c\right)}{bc}+\frac{c}{a}+1=\frac{ab+ac+bc+b^2}{bc}+\frac{c}{a}+1\)

\(=\frac{b}{c}+\frac{c}{a}+1=\frac{ab+c^2+ac}{ac}=\frac{c^2-bc}{ac}=\frac{c-b}{a}\)

Nếu:  \(x^2+y^2+z^2-xy-yz-zx=0\)<=>   \(x=y=z\)

<=>  \(ab=bc=ca\)<=>  \(a=b=c\)

\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)=2.2+2=6\)

p/s: trg hợp 1 mk lm đc đến có z thôi, bn tham khảo

DD
17 tháng 9 2021

\(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Đặt \(\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z\)

\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

mà \(a,b,c\)dương nên \(x=y=z\Rightarrow a=b=c\).

\(A=\left(2+\frac{a}{b}\right)\left(2+\frac{b}{c}\right)\left(2+\frac{c}{a}\right)=3^3=27\).

17 tháng 9 2021

\(3a^2\)\(b^2\)\(c^2\)

\(=>ab+bc+ca=0\)

\(=>ab^2\)\(+bc^2\)\(+ca^2\)\(=0\)

\(TH1:ab+bc+ca=0\)

\(ab+bc=-ca\)

\(=>a+c=-\frac{ac}{b}\)

\(=>a+b=-\frac{ab}{c}\)

\(b+c=-\frac{bc}{a}\)

\(Thay\)\(A\)

\(=>A=-3\)

\(\left(ab-bc\right)^2\)\(+\left(bc-ca\right)^2\)\(+\left(ca-ab\right)^2\)\(=0\)

\(=>ab-bc=0\)

\(bc-ca=0\)

\(ca-ab=0\)

\(=>ab=bc=ca\)

\(=>a=b=c\)

\(Thay\)\(A\)

\(=>A=-24\)

\(=>A=\left(-3;-24\right)\)

Em làm sai mong anh thông cảm cho ạ

13 tháng 12 2016

Áp dụng BĐT AM-GM ta có:

\(9a^3+\frac{1}{3}+\frac{1}{3}\ge3\sqrt[3]{9a^3\cdot\frac{1}{3}\cdot\frac{1}{3}}=3a\)

\(3b^2+\frac{1}{3}\ge2\sqrt{3b^2\cdot\frac{1}{3}}=2b\)

Do đó: \(A\le\text{∑}\frac{a}{3a+2b+c-1}=\frac{a}{2a+b}\left(a+b+c=1\right)\)

\(2A\le\text{∑}\frac{2a}{2a+b}=3-\text{∑}\frac{b}{2a+b}=3-\text{∑}\frac{b^2}{2ab+b^2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(2A\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\Leftrightarrow A\le1\)

Dấu "=" khi \(a=b=c=\frac{1}{3}\)