K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2016

Ta có:

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(=\frac{2}{\left(2.3\right).2}+\frac{2}{\left(6.5\right).2}+\frac{2}{\left(10.7\right).2}+...+\frac{2}{\left(198.101\right).2}\)

\(=\frac{2}{2.\left(3.2\right)}+\frac{2}{6.\left(5.2\right)}+\frac{2}{10.\left(7.2\right)}+...+\frac{2}{198.\left(101.2\right)}\)

\(=\frac{2}{2.6}+\frac{2}{6.10}+\frac{2}{10.14}+...+\frac{2}{198.202}\)

\(=\frac{4}{2.6}:2+\frac{4}{6.10}:2+\frac{4}{10.14}:2+...+\frac{4}{198.202}:2\)

\(=\left(\frac{4}{2.6}+\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{198.202}\right):2\)

\(=\left(\frac{1}{2}-\frac{1}{202}\right):2\)

\(=\frac{50}{202}=\frac{25}{101}\)

Vậy \(A=\frac{25}{101}\)

4 tháng 7 2016

frac,left,right là gì vậy ?

4 tháng 6 2021

A=12/1.2 .22/2.3 .32/3.4 .42/4.5

=1/2. 2.2/2.3 .3.3/3.4 .4.4/4.5

=1/2.2/3.3.4.4./5

=1/5

25 tháng 1

Câu 1: Thực hiện phép tính A = -125 x 2^3 + 71 x 53 + 53 x (-29) - 42 x 53 Bước 1: Tính các giá trị đơn giản 2^3 = 8 -125 x 8 = -1000 71 x 53 = 3763 53 x (-29) = -1537 -42 x 53 = -2226 Bước 2: Thay vào biểu thức ban đầu A = -1000 + 3763 - 1537 - 2226 Bước 3: Tiến hành cộng và trừ A = -1000 + 3763 = 2763 A = 2763 - 1537 = 1226 A = 1226 - 2226 = -1000 Vậy, A = -1000. Câu 2: Tính giá trị biểu thức A = 2019 1 × 2 + 2019 2 × 3 + 2019 3 × 4 + ⋯ + 2019 2018 × 2019 1×2 2019 ​ + 2×3 2019 ​ + 3×4 2019 ​ +⋯+ 2018×2019 2019 ​ Biểu thức này có thể viết lại dưới dạng tổng: 𝐴 = ∑ 𝑘 = 1 2018 2019 𝑘 ( 𝑘 + 1 ) A=∑ k=1 2018 ​ k(k+1) 2019 ​ Để đơn giản hóa mỗi hạng tử, ta phân tích phân số 1 𝑘 ( 𝑘 + 1 ) k(k+1) 1 ​ thành: 1 𝑘 ( 𝑘 + 1 ) = 1 𝑘 − 1 𝑘 + 1 k(k+1) 1 ​ = k 1 ​ − k+1 1 ​ Do đó, ta có thể viết lại biểu thức A như sau: 𝐴 = 2019 × ( 1 1 − 1 2 + 1 2 − 1 3 + ⋯ + 1 2018 − 1 2019 ) A=2019×( 1 1 ​ − 2 1 ​ + 2 1 ​ − 3 1 ​ +⋯+ 2018 1 ​ − 2019 1 ​ ) Tất cả các hạng tử sẽ tự rút gọn, và ta chỉ còn lại: 𝐴 = 2019 × ( 1 − 1 2019 ) A=2019×(1− 2019 1 ​ ) Bây giờ tính toán: 𝐴 = 2019 × 2018 2019 = 2018 A=2019× 2019 2018 ​ =2018 Vậy A = 2018.


25 tháng 1 2020

\(A=\left(x-1\right)^2-3\)

a) Với x = -2, ta có:

\(A=\left(-2-1\right)^2-3=6\)

b) \(\left(x-1\right)^2-3\ge3\text{ vì }\left(x-1\right)^2\ge0\forall x\inℝ\)

\(\Rightarrow MIN_A=3\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: \(MIN_A=3\Leftrightarrow x=1\)

Khong chac dau nhe .-.

26 tháng 1 2020

A=(x-1)2-3

Với x=-2

Ta có:

A=(-2-1)2-3

A=(-3)2-3

A=9-6

A=3

Vậy A=3 với x=-2

b)Tính GTNN của biểu thức A

Để biểu thức A đạt GTNN <=>(x-1)2

<=>(x-1) đạt GTNN

<=>x=1

Vậy với x =1 thì biểu thức A đạt GTNN

20 tháng 5 2020

ta có\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2014\cdot2015}\)

             \(=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\right)\)

             \(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)

               \(=4\left(1-\frac{1}{2015}\right)\)

                \(=4\cdot\frac{2014}{2015}\)

                  \(=\frac{8056}{2015}\)

  VẬY A=\(\frac{8056}{2015}\)

14 tháng 10 2015

Ta có: 

212-2(X+1) =1

=> 212-2(X+1)= 20

=> 12 - 2(x+1) = 0

=> 2(x+1)=12

=>x+1=6

=> x=5

Thay x=5 vào biểu thức A= x2 +x+1 , ta được :

A = 52 + 5+1= 25+6 = 31

Vậy A = 31 tại x thỏa mãn 212 - 2(x+1)=1

17 tháng 4 2020

\(A=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right).2}\)

\(A=\frac{11.3^{22+7}-\left(3^2\right)^{15}}{2^2.\left(3^{14}\right)^2}\)

\(A=\frac{11.3^{29}-3^{30}}{4.3^{28}}\)

\(A=\frac{11.3^{29}-3^{29}.3}{4.3^{28}}\)

\(A=\frac{3^{29}.\left(11-3\right)}{3^{28}.4}\)

\(A=\frac{3^{28}.3.8}{3^{28}.4}\)

\(A=\frac{3^{28}.3.4.2}{3^{28}.4}\)

\(A=6\)

\(A=3.2\)

Vậy : \(A=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=6\)