Nguyễn Danh Tùng
Giới thiệu về bản thân
Câu 1: So sánh Biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) 3(a+1)(a+2) Bước 1: Rút gọn biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Ta có thể khai triển từng phần: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) = ( 𝑎 + 1 ) ( 𝑎 2 + 5 𝑎 + 6 ) = 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 (a+1)(a+2)(a+3)=(a+1)(a 2 +5a+6)=a 3 +6a 2 +11a+6 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 𝑎 ( 𝑎 2 + 3 𝑎 + 2 ) = 𝑎 3 + 3 𝑎 2 + 2 𝑎 a(a+1)(a+2)=a(a 2 +3a+2)=a 3 +3a 2 +2a Vậy biểu thức 1 trở thành: ( 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 ) − ( 𝑎 3 + 3 𝑎 2 + 2 𝑎 ) = 3 𝑎 2 + 9 𝑎 + 6 (a 3 +6a 2 +11a+6)−(a 3 +3a 2 +2a)=3a 2 +9a+6 Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 3 ( 𝑎 2 + 3 𝑎 + 2 ) = 3 𝑎 2 + 9 𝑎 + 6 3(a+1)(a+2)=3(a 2 +3a+2)=3a 2 +9a+6 Như vậy, biểu thức 1 và biểu thức 2 đều có giá trị bằng nhau. Do đó, cả hai biểu thức bằng nhau. Câu 2: Tính M Biểu thức: 𝑀 = 1 × 2 + 2 × 3 + 3 × 4 + ⋯ + 2002 × 2003 M=1×2+2×3+3×4+⋯+2002×2003 Bước 1: Viết lại tổng: 𝑀 = ∑ 𝑘 = 1 2002 𝑘 ( 𝑘 + 1 ) M= k=1 ∑ 2002 k(k+1) Bước 2: Rút gọn 𝑘 ( 𝑘 + 1 ) k(k+1): 𝑘 ( 𝑘 + 1 ) = 𝑘 2 + 𝑘 k(k+1)=k 2 +k Do đó: 𝑀 = ∑ 𝑘 = 1 2002 ( 𝑘 2 + 𝑘 ) = ∑ 𝑘 = 1 2002 𝑘 2 + ∑ 𝑘 = 1 2002 𝑘 M= k=1 ∑ 2002 (k 2 +k)= k=1 ∑ 2002 k 2 + k=1 ∑ 2002 k Bước 3: Tính từng tổng: Tổng ∑ 𝑘 = 1 2002 𝑘 2 ∑ k=1 2002 k 2 là tổng bình phương của các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 2 = 𝑛 ( 𝑛 + 1 ) ( 2 𝑛 + 1 ) 6 k=1 ∑ n k 2 = 6 n(n+1)(2n+1) Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 2 = 2002 ( 2002 + 1 ) ( 2 × 2002 + 1 ) 6 = 2002 × 2003 × 4005 6 k=1 ∑ 2002 k 2 = 6 2002(2002+1)(2×2002+1) = 6 2002×2003×4005 Tổng ∑ 𝑘 = 1 2002 𝑘 ∑ k=1 2002 k là tổng các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 = 𝑛 ( 𝑛 + 1 ) 2 k=1 ∑ n k= 2 n(n+1) Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 = 2002 ( 2002 + 1 ) 2 = 2002 × 2003 2 k=1 ∑ 2002 k= 2 2002(2002+1) = 2 2002×2003 Bước 4: Tính tổng 𝑀 M: 𝑀 = 2002 × 2003 × 4005 6 + 2002 × 2003 2 M= 6 2002×2003×4005 + 2 2002×2003 Rút gọn biểu thức: 𝑀 = 2002 × 2003 ( 4005 6 + 1 2 ) M=2002×2003( 6 4005 + 2 1 ) Tính phần trong dấu ngoặc: 4005 6 + 1 2 = 4005 + 3 6 = 4008 6 = 668 6 4005 + 2 1 = 6 4005+3 = 6 4008 =668 Vậy: 𝑀 = 2002 × 2003 × 668 M=2002×2003×668 Đây là kết quả của phép tính 𝑀 M.
Câu 1: Thực hiện phép tính A = -125 x 2^3 + 71 x 53 + 53 x (-29) - 42 x 53 Bước 1: Tính các giá trị đơn giản 2^3 = 8 -125 x 8 = -1000 71 x 53 = 3763 53 x (-29) = -1537 -42 x 53 = -2226 Bước 2: Thay vào biểu thức ban đầu A = -1000 + 3763 - 1537 - 2226 Bước 3: Tiến hành cộng và trừ A = -1000 + 3763 = 2763 A = 2763 - 1537 = 1226 A = 1226 - 2226 = -1000 Vậy, A = -1000. Câu 2: Tính giá trị biểu thức A = 2019 1 × 2 + 2019 2 × 3 + 2019 3 × 4 + ⋯ + 2019 2018 × 2019 1×2 2019 + 2×3 2019 + 3×4 2019 +⋯+ 2018×2019 2019 Biểu thức này có thể viết lại dưới dạng tổng: 𝐴 = ∑ 𝑘 = 1 2018 2019 𝑘 ( 𝑘 + 1 ) A=∑ k=1 2018 k(k+1) 2019 Để đơn giản hóa mỗi hạng tử, ta phân tích phân số 1 𝑘 ( 𝑘 + 1 ) k(k+1) 1 thành: 1 𝑘 ( 𝑘 + 1 ) = 1 𝑘 − 1 𝑘 + 1 k(k+1) 1 = k 1 − k+1 1 Do đó, ta có thể viết lại biểu thức A như sau: 𝐴 = 2019 × ( 1 1 − 1 2 + 1 2 − 1 3 + ⋯ + 1 2018 − 1 2019 ) A=2019×( 1 1 − 2 1 + 2 1 − 3 1 +⋯+ 2018 1 − 2019 1 ) Tất cả các hạng tử sẽ tự rút gọn, và ta chỉ còn lại: 𝐴 = 2019 × ( 1 − 1 2019 ) A=2019×(1− 2019 1 ) Bây giờ tính toán: 𝐴 = 2019 × 2018 2019 = 2018 A=2019× 2019 2018 =2018 Vậy A = 2018.