Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Thế \(x=1\) vào P ta được:
\(P\left(1\right)=a.1^2+b.1+c=a+b+c\)
Thế \(x=-1\) vào P ta được:
\(P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)
b.\(x^2+x^4+x^6+...+x^{100}\)
Thế \(x=-1\) ta được:
\(\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+...+\left(-1\right)^{100}\)
\(=1+1+1+...+1=50\)
* Thay giá trị x = -1 vào đa thức, ta có:
a(-1)2 + b(-1) + c = a – b + c
Vậy giá trị đa thức bằng a – b + c tại x = -1
* Thay giá trị x = 1 vào đa thức, ta có:
a.12 + b.1 + c = a + b + c
Vậy giá trị đa thức bằng a + b + c tại x = 1.
a) Thay x = -1 vào đa thức
ta được :
= 1 + 1 + 1 + 1 +.....= 1(có 50 số hạng)
= 50 . 1 = 50
Vậy tại x = -1 thì biểu thức trên có giá trị là 50
b)ax2 + bx + c x = −1; x = 1 (a, b, c là hằng số)
* Thay x = -1 vào biểu thức được :
Vậy tại x = -1 thì biểu thức trên có giá trị là a - b + c
* Thay x = 1 vào biểu thức ta được :
a . 12 + b . 1 + c = a + b + c
Vậy tại x = 1 thì biểu thức trên có giá trị là a + b + c
a, \(A=\left(x+2y\right)^2-x+2y\)
Thay x = 2 ; y = -1 ta được
\(A=\left(2-2\right)^2-2-2=-4\)
b, Ta có \(\left(x^2+4>0\right)\left(x-1\right)=0\Leftrightarrow x=1\)
Thay x = 1 vào B ta được \(B=3+8-1=10\)
c, Thay x = 1 ; y = -1 ta được
\(C=3,2.1.\left(-1\right)=-3,2\)
d, Ta có \(x=\left|3\right|=3;y=-1\)Thay vào D ta được
\(D=3.9-5\left(-1\right)+1=27+5+1=33\)
thay x=2,y=-1 vào biểu thức A ta có;
A=(2+2.(-1)^2-2+2.(-1)
A=(2+-2)^2-2+-2
A=0-2+-2
A=-4
b)
(x^2+4)(x-1)=0
suy ra x-1=0(x^2+4>0 với mọi x thuộc thuộc R)
(+)x-1=0
x =1
thay x=1 vào biểu thức B ta có;
B=3.1^2+8.1-1
B=3.1+8-1
B=3+8-1
B=10
c)thay x=1 và y=-1 vào biểu thức C ta có;
C=3,2.1^5.(-1)^3
C=3,2.1.(-1)
C=(-3,2)
d)giá trị tuyệt đối của 3=3 hoặc (-3)
TH1;thay x=3:y=-1 vào biểu thức d ta có;
D=3.3^2-5.(-1)+1
D=3.9-(-5)+1
D=27+5+1
D=33
a) =1+1+1+....+1 (50 số bạn nhé)
=1*50=50
b)TH x=-1: => a-b+c
TH x=1 => a+b+c
a: \(=x^2-xy+xy+y^2=x^2+y^2=100\)
b \(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy=-2\cdot\dfrac{1}{2}\cdot\left(-100\right)=-1\cdot\left(-100\right)=100\)
a)` x(x - y) + y(x + y) `
`=x^2-xy+xy+y^2`
`=x^2+y^2`(1)
thay x= -6 ; y= 8 vào 1 ta đc
\(\left(-6\right)^2+8^2=36+64=100\)
b)`) x(x^2 - y) - x^2 (x + y) + y (x^2 - x) `
`=x^3-xy-x^3-xy+yx^2-xy`
`=\(-3xy+yx^2\)(2)
thay `x= 1/2 và y = -100` ta đc
\(-\dfrac{3.1}{2}.\left(-100\right)+\dfrac{\left(-100\right).1}{2}=150-50=100\)
ax^3-bx+c
Thay đa thức ax^3-bx+c tại x=-1 và x=1
a.(-1)^3-b.1+c
xog hết bt lm
a) Thay x = -1 vào đa thức \(x^2+x^4+...+x^{100}\)( 50 số ) ta có:
\(x^2+x^4+...+x^{100}=\left(-1\right)^2+\left(-1\right)^4+...+\left(-1\right)^{100}\)
\(=1+1+...+1=1.50=50\)
Vậy tại x = -1 thì đa thức \(x^2+x^4+...+x^{100}=50\)
b) Thay x = -1 vào đa thức \(ax^2+bx+c\) ta có:
\(ax^2+bx+c=a-b+c\)
Vậy tại x = -1 thì đa thức \(ax^2+bx+c=a-b+c\)
Thay x = 1 vào đa thức \(ax^2+bx+c\) ta có:
\(ax^2+bx+c=a+b+c\)
Vậy tại x = 1 thì đa thức \(ax^2+bx+x=a+b+c\)
a, x^2+x^4+...+x^100 tại x=-1
thay x=-1 vào biểu thức, ta có:
-1^2 + (-1)^4+...+(-1)^100
= 1 + 1 + 1 +...+1
xét biểu thức trên, ta có số số hạng
(100 -2) :2 +1 = 50 ( số hạng )
do đó : 1+1+1+...+1 = 50
hay x^2 + x^4 + x^6+...+x^100 = 50