Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5^3.2.3^2.5.2^6}{5^{10}.3^2.2^{13}}=\frac{5^4.2^7.3^2}{5^{10}.3^2.2^{13}}=\frac{1}{5^6.2^6}=\frac{1}{10^6}\)
\(\frac{18\left(27-23\right)}{4\left(34-52\right)}=\frac{18.4}{4.\left(-18\right)}=-1\)
a) Ta thấy để A là số dương thì tử và mẫu phải cùng dấu. Mà -3 là số âm nên tử số a - 1 phải là số âm.
=> a - 1 < 0
=> a < - 1
Vậy để A là số dương thì A < -1
b) Để A là số âm thì tử và mẫu phải trái dấu. Mà -3 là số âm nên a - 1 phải là số dương.
=> a - 1 > 0
=> a > 1
Vậy để A là số dương thì a > 1.
c) Để A không là số âm, không là số dương thì A = 0
=> \(\frac{a-1}{-3}=0\)
\(=>a-1=0:\left(-3\right)=0\)
=> a = 0 + 1 = 1
Vậy để A không là số âm, không là số dương thì A = 1
\(10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)
Vì \(10^{12}-1>10^{11}+1\)
nên \(-\dfrac{9}{10^{12}-1}>-\dfrac{9}{10^{11}+1}\)
hay A>B
Ta có: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)
\(Q=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+10}\)
\(Q=\frac{1}{\frac{2.\left(2+1\right)}{2}}+\frac{1}{\frac{3.\left(3+1\right)}{2}}+....+\frac{1}{\frac{10.\left(10+1\right)}{2}}\)
\(Q=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+....+\frac{1}{\frac{10.11}{2}}\)
\(Q=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{10.11}\)
\(\frac{1}{2}Q=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
\(\frac{1}{2}Q=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
=>\(Q=\frac{9}{22}.2=\frac{9}{11}\)
\(Q=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{55}\\ \Rightarrow\frac{1}{2}Q=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\)
Tiếp theo tự tính nhé
a) \(2^x+5=21\)
\(2^x=21-5\)
\(2^x=16\)
\(2^x=2^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
a ) \(2^x+5=21\)
\(2^x=21-5\)
\(2^x=16\)
\(2^x=2^4\)
\(\Rightarrow x=4\)
\(x.2^{2014}=2^{2016}\)
\(x=2^{2016}:2^{2014}\)
\(x=2^{2016-2014}\)
\(x=2^2\)
\(x=4\)
x . 22014 = 22016
=> x = 22016 : 22014
=> x = 22016-2014
=> x = 22
=> x = 4
Vậy x = 4
+) Ta có: \(H=3+3^2+3^3+...+3^{600}\)
\(\Rightarrow H=\left(3+3^2+3^3\right)+...+\left(3^{598}+3^{599}+3^{600}\right)\)
\(\Rightarrow H=\left(3+9+27\right)+...+3^{597}.\left(3+3^2+3^3\right)\)
\(\Rightarrow H=39+...+3^{597}.39\)
\(\Rightarrow H=\left(1+...+3^{597}\right).39⋮13\)
\(\Rightarrow H⋮13\)
+) Ta có: \(H=3+3^2+3^3+...+3^{600}\)
\(\Rightarrow H=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{596}+3^{597}+3^{598}+3^{599}+3^{600}\right)\)
\(\Rightarrow H=3\left(1+3+3^2+3^3+3^4\right)+...+3^{596}\left(1+3+3^2+3^3+3^4\right)\)
\(\Rightarrow H=3.40+...+3^{596}.40\)
\(\Rightarrow H=\left(3+...+5^{596}\right).40⋮40\)
\(\Rightarrow H⋮40\)
+) Ta có: \(H=3+3^2+3^3+...+3^{600}\)
\(\Rightarrow H=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{599}+3^{600}\right)\)
\(\Rightarrow H=\left(3+9\right)+3^2\left(3+9\right)+...+3^{598}\left(3+9\right)\)
\(\Rightarrow H=12+3^2.12+...+3^{598}.12\)
\(\Rightarrow H=\left(1+3^2+...+3^{598}\right).12⋮12\)
\(\Rightarrow H⋮12\)
\(H=3+3^2+3^3+...+3^{600}\)
\(H=\left(3+3^2+3^3\right)+...+\left(3^{598}+3^{599}+3^{600}\right)\)
\(H=3.\left(1+3+3^2\right)+...+3^{598}.\left(1+3+3^2\right)\)
\(H=3.13+...+3^{598}.13\)
\(H=13.\left(3+...+3^{598}\right)⋮3\)
Vậy H \(⋮\)3
abc : 11 = a + b + c
11 . ( a + b +c ) = abc
11 . a + 11 . b + 11 .c = a . 100 + b .10 + c
11 . b - b . 10 + c . 11 - c = a .100 - a . 11
b + c . 10 = a . 89
Vì a, b, c là chữ số nên a phải bằng 1 vì nếu a lớn hơn hoặc bằng 2 thì 2 . 89 = 178 > 99 ( giá trị lớn nhất của b + c .10 )
=> b + c . 10 = 1 . 89
c không thể bằng 9 vì nếu c = 9 thì 9 . 10 = 90 > 89 ( loại )
c cũng không thể bé hơn hoặc bằng 7 vì nếu c = 7 thì giá trị lớn nhất của b + c . 10 = 9 + 7 . 10 = 79 ( loại )
=> c = 8
Ta có : b + 8 . 10 = 89
b + 80 = 89
b = 89 - 80
b = 9
Ta có số cần tìm là : 198
XONG RỒI ĐÓ BẠN !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!