Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì : \(\overline{3a56b}⋮2,5\Rightarrow b=0\)
Ta có : \(\overline{3a560}⋮3\)
\(\Rightarrow\left(3+a+5+6+0\right)⋮3\)
\(\Rightarrow\left(14+a\right)⋮3\)
\(\Rightarrow12+\left(a+2\right)⋮3\) . Mà : \(12⋮3\Rightarrow\left(a+2\right)⋮3\)
Vì : a là chữ số ; \(a+2\ge2\Rightarrow a+2\in\left\{3;6;9\right\}\)
+) \(a+2=3\Rightarrow a=3-2\Rightarrow a=1\)
+) \(a+2=6\Rightarrow a=6-2\Rightarrow a=4\)
+) \(a+2=9\Rightarrow a=9-2\Rightarrow a=7\)
Vậy : a = 1 thì b = 0
a = 4 thì b = 0
a = 7 thì b = 0
Mỗi giờ xuôi dòng thuyền đi được 1/3 khúc sông AB, ngược dòng đi được 1/5 khúc sông AB.
2 lần vận tốc cụm bèo (dòng sông):
1/3 - 1/5 = 2/15 (khúc sông)
Vận tốc cụm bèo:
2/15 : 2 = 1/15 (khúc sông)
Thời gian cụm bèo trôi từ A đến B là:
1 : 1/15 = 15 (giờ)
Đ/s: 15 giờ
\(\left|x-\frac{1}{3}\right|+\left|x-y\right|=0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{3}=0\\x-y=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{1}{3}\\x=y\end{cases}\)\(\Leftrightarrow x=y=\frac{1}{3}\)
64=8.8=82
169=13.13=132
196=14.14=142
Mẹo nhỏ: Chữ số tận cùng là 4 sẽ là bình phương của số có tận cùng là 2 hoặc 8
Chữ số tận cùng là 9 sẽ là bình phương của những số có tận cùng là 3
Chữ số tận cùng là 6 khi bình phương của những số là 2; 4;6
Gọi d=ƯCLN(6n+12;3n+5).
Ta có:6n+12 chia hết cho d. suy ra: 3n+6 chia hết cho d.
3n+5 chia hết cho d.
suy ra: (3n+6)-(3n+5) chia hết cho d.
suy ra: 1 chia hết cho d.
suy ra: d=1.
Vậy \(\frac{6n+12}{3n+5}\) là PS tối giản.
A= \(\frac{n+3}{n-2}\)=\(\frac{\left(n-2\right)+5}{n-2}\)=1+\(\frac{5}{n-2}\)
Để A là phân số tối giản khi n-2 \(\pm\) Ư(5)
Vậy n-2\(\pm\)5k
<=> n\(\pm\)5h+2
\(10101\times\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)=10101\times\frac{5}{111111}+10101\times\frac{5}{222222}-10101\times\frac{4}{111111}\) \(=\frac{5}{11}+\frac{5}{22}-\frac{4}{11}=\frac{7}{22}\)
a) Ta thấy để A là số dương thì tử và mẫu phải cùng dấu. Mà -3 là số âm nên tử số a - 1 phải là số âm.
=> a - 1 < 0
=> a < - 1
Vậy để A là số dương thì A < -1
b) Để A là số âm thì tử và mẫu phải trái dấu. Mà -3 là số âm nên a - 1 phải là số dương.
=> a - 1 > 0
=> a > 1
Vậy để A là số dương thì a > 1.
c) Để A không là số âm, không là số dương thì A = 0
=> \(\frac{a-1}{-3}=0\)
\(=>a-1=0:\left(-3\right)=0\)
=> a = 0 + 1 = 1
Vậy để A không là số âm, không là số dương thì A = 1