\(B=2x^4+5x^3-29x+80\) tại x thỏa mãn \(x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

Ta có:

\(x^3+2x^2-x-14=0\)

\(\Leftrightarrow x^3-2x^2+4x^2-8x+7x-14=0\)

\(\Leftrightarrow x^2\left(x-2\right)+4x\left(x-2\right)+7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+7\right)=0\)

* x - 2 = 0 => x = 2

* \(x^2+4x+7=0\Leftrightarrow x^2+4x+4+3=0\Leftrightarrow\left(x+2\right)^2+3=0\left(l\right)\)

Thay x = 2 vào biểu thức ta được:

\(B=2.2^4+5.2^3-29.2+80=32+40-58+80=94\)

Vậy: B = 94 khi x = 2

2 tháng 5 2018

bạn ơi tại sao ở TH2 là \(x^2+4x+4+3=0\) lại suy ra đc \(\left(x+2\right)^2+3=0\) ý mk là 4x đi đâu rồi.

giải thích cho mk nha!! mk tick r đó. thanks!!!

25 tháng 2 2020

Câu 2 :

Ta có : \(x^3+2x^2-x-14=0\)

=> \(x^3-2x^2+4x^2-8x+7x-14=0\)

=> \(x^2\left(x-2\right)+4x\left(x-2\right)+7\left(x-2\right)=0\)

=> \(\left(x-2\right)\left(x^2+4x+7\right)=0\)

=> \(\left[{}\begin{matrix}x-2=0\\x^2+4x+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=2\\x^2+4x+4+3=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=2\\\left(x+2\right)^2=-3\left(VL\right)\end{matrix}\right.\)

=> \(x=2\)

- Ta có : \(2x^4+5x^3-29x+80\)

\(=2x^4-4x^3+9x^3-18x^2+18x^2-36x+7x-14+94\)

\(=2x^3\left(x-2\right)+9x^2\left(x-2\right)+18x\left(x-2\right)+7\left(x-2\right)+94\)

\(=\left(2x^3+9x^2+18x+7\right)\left(x-2\right)+94\left(I\right)\)

- Thay x = 2 vào biểu thức ( I ) ta được :

\(\left(2.2^3+9.2^2+18.2+7\right)\left(2-2\right)+94\)

\(=\left(2.2^3+9.2^2+18.2+7\right)0+94\)

\(=0+94\)

\(=94\)

Vậy giá trị của biểu thức trên là 94 .

a) Ta có 2011 = x => 2012 = x + 1

Thay x + 1 = 2012 vào biểu thức ta dc:

x5 - (x + 1)x4 + (x + 1)x3 - (x+1)x2 + (x+1)x - 2012

= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 2012 = x - 2012 = 2011 - 2012 = -1

Vậy giá trị của biểu thức là -1 khi x = 2011

b) Ta có : (x - 1)60 + (y + 2)90 = 0 <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay x = 1 và y = -2 vào biểu thức ta dc: 2.15 - 5.(-2)3 + 4 = 2 - 5.(-8) + 4 = 2 + 40 + 4 = 46

Vậy ...

14 tháng 2 2018

Vì \(\left|x-1\right|\ge0\) và \(\left(y+2\right)^{20}\ge0\) nên \(\left|x-1\right|+\left(y+2\right)^{20}\ge0\)

Mà \(\left|x-1\right|+\left(y+2\right)^{20}=0\) ( đề bài cho )

\(\Rightarrow\)\(\left|x-1\right|=\left(y+2\right)^{20}=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{20}=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1;y=-2\) vàp biểu thức \(2x^2-5y^3+2015\) ta được : 

\(2.1^2-5.\left(-2\right)^3+2015=2.1-5.\left(-8\right)+2015=2-\left(-40\right)+2015=42+2015=2057\)

27 tháng 5 2020

a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)

\(< =>2x+2=12x-3\)

\(< =>10x=5\)\(< =>x=\frac{1}{2}\)

khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)

\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)

xong nhe 

27 tháng 5 2020

Cái này thì EZ mà sư phụ : ]

a) 2(x+1) = 3(4x-1)

=> 2x + 2 = 12x - 3

=> 2x - 12x = -3 - 2

=> -10x = -5

=> x = 1/2

Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)

=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(x-5=0\Rightarrow x=5\)

\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)

Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )

23 tháng 4 2021

Q = (6x+ 21xy) - (4x2y + 14y2) + 9

Q = 3x(2x2 + 7y) - 2y(2x2 + 7y) + 9

Q = 3x.0 - 2y.0 + 9

Q = 9

17 tháng 12 2017

1,

Vì \(\left|2x-27\right|^{2007}\ge0;\left(3y+10\right)^{2008}\ge0\)

\(\Rightarrow\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}\ge0\)

Mà \(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}=0\)

\(\Rightarrow\hept{\begin{cases}\left|2x-27\right|^{2007}=0\\\left(3y+10\right)^{2008}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-10}{3}\end{cases}}}\)

2,

TH1: \(x\ge\frac{3}{5}\)

<=> 2(5x-3)-2x=14

<=> 10x-6-2x=14

<=>8x-6=14

<=>8x=20

<=>x=5/2 (thỏa mãn)

TH2: x < 3/5

<=> 2(3-5x)-2x=14

<=>6-10x-2x=14

<=>6-12x=14

<=>12x=-8

<=>x=-2/3 (thỏa mãn)

Vậy \(x\in\left\{\frac{5}{2};\frac{-2}{3}\right\}\)

17 tháng 12 2017

1 x=13,5 ;y=-10/3

2 kết quả x =-2/3