Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn thay y xyz=2010 vào A ta được
A= xyz*x/xy+xyz*x+xyz + y/yz+y+xyz + z/xz+z+1
suy ra A=x^2yz/xy(1+xz+z) + y/y(z+1+xz) + z/xz+x+1
A= xz/1+xz+z + 1/z+1+xz + x/xz+z+1 = xz+1+x/xz+1+x =1
Vay A=1
Ta có: x = 2011 \(\Rightarrow\) 2010 = x - 1
\(A=x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)
\(=x+1\)
\(=2011+1\)
\(=2012.\)
x=2011
=> 2010= x-1
A = x^2011- (x-1) x^2010- (x-1).x^2009-.....- (x-1).x+1
= x^2011-x^2011+x^2010- x^2010+x^2009..x^2.-x^2+x+1
= x+1
=(x-1)+2= 2010+2=2012
\(\text{Ta có:}A=\frac{2010x+2680}{x^2+1}=\frac{-335x^2+335x^2-335+2010x+2680+335}{x^2+1}.\)
\(=\frac{-335\left(x^2+1\right)+335\left(x^2+6x+9\right)}{x^2+1}=-335+\frac{335\left(x+3\right)^2}{x^2+1}\ge-335\)
\(\text{Vậy GTNN của A=-335. Dấu bằng xảy ra khi và chỉ khi }x+3=0\Leftrightarrow x=-3\)
\(A=\frac{2010x+2680}{x^2+1}\)
\(\Leftrightarrow Ax^2-2010x+A-2680=0\)
\(\Delta=\left(-2010\right)^2-4A\left(A-2680\right)\)
\(=-4\left(A-3015\right)\left(A+335\right)\)
Có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(A-3015\right)\left(A+335\right)\le0\)
\(\Leftrightarrow\hept{\begin{cases}A\le3015\\A\ge-335\end{cases}}\)
Ta có:A=\(\frac{335x^2+2010x+3015-\left(335x^2+335\right)}{x^2+1}\)
= \(\frac{335\left(x^2+6x+9\right)}{x^2+1}-\frac{335\left(x^2+1\right)}{x^2+1}\)
=\(\frac{335\left(x+3\right)^2}{x^2+1}-335\)
Ta có: (x+3)2>= 0
=>335(x+3)2>=0
Mà x2+1>0
=>\(\frac{335\left(x+3\right)^2}{x^2+1}\ge0\)
=>\(\frac{335\left(x+3\right)^2}{x^2+1}-335\ge-335\)
=>A>= -335
Dấu "=" xảy ra <=> (x+3)2=0
<=> x+3=0
<=> x=-3
Vậy ...
\(\frac{2010x}{xy+2010x+2010}+\frac{y}{yz+y+2010}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)