Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
\(\dfrac{-13}{39}=\dfrac{-1}{3}\) và \(-\dfrac{21}{63}=\dfrac{-1}{3}\)
Vì \(\dfrac{-1}{3}=\dfrac{-1}{3}\) nên \(\dfrac{-13}{39}=-\dfrac{21}{63}\)
b, Ta có:
\(\dfrac{1}{234567}>0\) (số hữu tỉ dương) và \(-\dfrac{2}{14}< 0\) (số hữu tỉ âm)
=> \(\dfrac{1}{234567}>-\dfrac{2}{14}\)
c\(\dfrac{1}{2012}>-\dfrac{1}{14}\), Ta có:
\(\dfrac{-39}{65}=\dfrac{-3}{5}\) và \(-\dfrac{21}{35}=\dfrac{-3}{5}\)
mà \(\dfrac{-3}{5}=\dfrac{-3}{5}\) nên \(\dfrac{-39}{65}=-\dfrac{21}{35}\)
d,Ta có:
\(\dfrac{1}{2012}>0\) (số hữu tỉ dương) và \(-\dfrac{1}{14}< 0\) (số hữu tỉ âm)
Vậy suy ra: \(\dfrac{1}{2012}>-\dfrac{1}{14}\)
\(A=-5,13:\left(5\dfrac{5}{28}-1\dfrac{8}{9}.1,25+1\dfrac{16}{63}\right)\)
\(=-5,13:\left(\dfrac{145}{28}-\dfrac{17}{9}.\dfrac{125}{100}+\dfrac{79}{63}\right)\)
\(=-5,13:\left(\dfrac{145}{28}-\dfrac{17}{9}.\dfrac{5}{4}+\dfrac{79}{63}\right)\)
\(=-5,13:\left(\dfrac{145}{28}-\dfrac{85}{36}+\dfrac{79}{63}\right)\)
\(=-5,13:\dfrac{57}{14}=-5,13:\dfrac{15}{57}\)
\(=\dfrac{-71,82}{57}=1,26\)
Vậy \(A=1,26\)
\(B=\left(3\dfrac{1}{3}.1,9+19,5:4\dfrac{1}{3}\right).\left(\dfrac{62}{75}-\dfrac{4}{25}\right)\)
\(=\left(\dfrac{10}{3}.1,9+19,5:\dfrac{13}{3}\right).\left(\dfrac{62-12}{75}\right)\)
\(=\left(\dfrac{19}{3}+\dfrac{58,5}{13}\right).\dfrac{50}{75}\)
\(=\left(\dfrac{19}{3}+4,5\right).\dfrac{2}{3}\)
\(=\dfrac{32,5}{3}.\dfrac{2}{3}=\dfrac{65}{9}=7\dfrac{2}{9}\)
Vậy \(B=7\dfrac{2}{9}\)
Bài 1:
Ta có:
\(\left(\dfrac{ab}{2}-\dfrac{6ab}{7}\right):\dfrac{5b^2}{14}=\left(\dfrac{7ab}{14}-\dfrac{12ab}{14}\right).\dfrac{14}{5b^2}\)
\(=\dfrac{-5ab}{14}.\dfrac{14}{5b^2}=\dfrac{-a}{b}\)(1)
Thay \(a=\dfrac{2007}{2010};b=\dfrac{2011}{2010}\) vào (1) ta được:
\(\dfrac{-\dfrac{2007}{2010}}{\dfrac{2011}{2010}}=-\dfrac{2007}{2011}\)
Vậy......................
Chúc bạn học tốt!!!
Bài 2:
\(\left(-1\dfrac{1}{2}:\dfrac{3}{-4}\right).\left(-4\dfrac{1}{2}\right)-\dfrac{1}{4}< \dfrac{x}{8}< -\dfrac{1}{2}.\dfrac{3}{4}:\dfrac{1}{8}+1\)
\(\Rightarrow2.\left(-\dfrac{9}{2}\right)-\dfrac{1}{4}< \dfrac{x}{8}< -3+1\)
\(\Rightarrow-\dfrac{37}{4}< \dfrac{x}{8}< -2\)
\(\Rightarrow\dfrac{-74}{8}< \dfrac{x}{8}< -\dfrac{16}{8}\)
\(\Rightarrow-74< x< -16\)
\(\Rightarrow x\in\left\{-73;-72;-71;....;-18;-17\right\}\)
Vậy..............................
Chúc bạn học tốt!!!
\(a,A=\dfrac{7}{35}+\left(-1\dfrac{3}{4}+\dfrac{12}{7}\right)-\left(\dfrac{1}{4}-\dfrac{2}{7}-\dfrac{12}{35}\right)-\dfrac{3}{7}\)\(A=\dfrac{7}{35}-\dfrac{7}{4}+\dfrac{12}{7}-\dfrac{1}{4}+\dfrac{2}{7}+\dfrac{13}{35}-\dfrac{3}{7}\\ A=\left(\dfrac{7}{35}+\dfrac{13}{35}\right)-\left(\dfrac{7}{4}-\dfrac{1}{4}\right)+\left(\dfrac{12}{7}+\dfrac{2}{7}-\dfrac{3}{7}\right)\)
\(A=\dfrac{4}{7}-\dfrac{3}{2}+\dfrac{11}{7}\\ A=\left(\dfrac{4}{7}+\dfrac{11}{7}\right)-\dfrac{3}{2}\\ A=\dfrac{15}{7}-\dfrac{3}{2}=\dfrac{9}{14}\)
Ta có :
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+..........+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(=\left(1+\dfrac{1}{3}+..........+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+......+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+......+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+..........+\dfrac{1}{2013}\)
\(\Leftrightarrow S-P=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}\right)\)
\(\Leftrightarrow S-P=0\)
\(\Leftrightarrow\left(S-P\right)^{2013}=0^{2013}=0\)
\(1+\dfrac{1}{2}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-2\times\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2010}+\dfrac{1}{2012}\right)\)
\(\Rightarrow1+\dfrac{1}{2}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1005}+\dfrac{1}{1006}\right)\)
\(\Rightarrow\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(\Rightarrow S=P\Rightarrow S-P=0\Rightarrow\left(S-P\right)^{2013}=1\)
A= \(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{9}{11}=\dfrac{1}{3}-\dfrac{7}{9}=\dfrac{3}{9}-\dfrac{7}{9}=-\dfrac{4}{9}\)
\(B=\left(\dfrac{1}{5}+\dfrac{2}{15}+\dfrac{2}{3}\right)+\left(-\dfrac{2}{7}+\dfrac{1}{42}-\dfrac{13}{28}-\dfrac{1}{4}\right)\)
\(=\dfrac{3+2+10}{15}+\dfrac{-2\cdot12+2-13\cdot3-21}{84}\)
=1-82/84
=2/84=1/42
\(C=\dfrac{1}{50}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\right)\)
\(=\dfrac{1}{50}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=\dfrac{1}{50}-1+\dfrac{1}{50}=\dfrac{1}{25}-1=-\dfrac{24}{25}\)
\(D=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)
a, \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{299.300}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{299}-\dfrac{1}{300}\)
\(=1-\dfrac{1}{300}=\dfrac{299}{300}\)
Vậy \(A=\dfrac{299}{300}\)
b, \(B=\dfrac{10^2}{16.26}+\dfrac{10^2}{26.36}+...+\dfrac{10^2}{86.96}\)
\(=10\left(\dfrac{10}{16.26}+\dfrac{10}{26.36}+...+\dfrac{10}{86.96}\right)\)
\(=10\left(\dfrac{1}{16}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{36}+...+\dfrac{1}{86}-\dfrac{1}{96}\right)\)
\(=10\left(\dfrac{1}{16}-\dfrac{1}{96}\right)\)
\(=10.\dfrac{5}{96}=\dfrac{25}{48}\)
Vậy...
a,\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{299.300}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{299}-\dfrac{1}{300}\)
(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với mọi \(a\in N\)*)
\(A=\dfrac{1}{1}-\dfrac{1}{300}=\dfrac{299}{300}\)
\(\Leftrightarrow A=\frac{1}{2}+\frac{1}{2\cdot7}+\frac{1}{7.5}+\frac{1}{5.13}+\frac{1}{13.8}+\frac{1}{8.19}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{5}+\frac{1}{5}-\frac{1}{13}+\frac{1}{13}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}\)
\(\Rightarrow A=-\frac{1}{19}\)