Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác vuông đường trung tuyến từ đỉnh góc vuông bằng 1/2 cạnh huyền
=> EF = 2DM = 5cm
Áp dụng pitago trong hai tam giác vuông DEF, DEN
DE^2 + DF^2 = EF^2 = 25 (1)
DE^2 + DN^2 = EN^2 = 4^2 =16
<=> DE^2 + (DF/2)^2 = 16 ( DN = DF/2) (2)
Lấy (1) trừ (2)
=> 3/4 xDF^2 = 9 => DF = 6/căn 3 (cm)
trong tam giác vuông thì đường trung tuyến kể từ góc vuông tối cạnh cạnh sẽ băng 1/2 cạnh huyền => EF=2DM=5
theo định lí pitago ta có :
\(FE^2=DE^2+DF^2=25\)
\(EN^2=DN^2+DE^2=16\)
=>\(DE^2+\frac{DF^2}{4}=16\) (do \(DN=\frac{DF}{2}\))
=> \(\frac{3}{4}DF^2=9\)=> DF=\(\frac{6}{\sqrt{3}}=3,46\)
câu 8L \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
ta thấy \(\sqrt{x}+1>=1\)
=> \(\left(\sqrt{x}+1\right)^2>=1\)
=> GTNN =1 khi x=0
bài 6: |x-1|=x+1
TH1: x-1=x+1<=> 0x=2 vô nghiệm
TH2: x-1=-1-x
<=> 2x=0<=> x=0
vậy tập nghiệm S={0}
câu 5: \(\sqrt{x^2+3}=\sqrt{4x}\) diều kiện x>=0
pt<=> \(x^2+3=4x\)
<=> x=3 hoặc x=1
vậy tập nghiệm S={1;3}
câu 2: \(\sqrt{x-2}\left(2\sqrt{x-2}-3\right)=2x-13\)
điều kiện x>=2
đặt \(\sqrt{x-2}=a\)>=0
=> pt có dạng a(2a-3)=4a2-9
<=> 2a2+3a-9=0
<=> a=-3 (loại) hoặc a=3/2
thya vào rồi giải: x-2=9/4
=> a=17/4 (thỏa )
các câu khác tương tự
Ba điểm không thẳng hàng sẽ tạo thành một tam giác. Để đường tròn qua hết 3 điểm đó thì đường tròn đó sẽ là đường tròn ngoại tiếp của tam giác.
Vì 3 điểm chỉ tạo nên 1 tam giác cho nên tam giác cúng chỉ có 1 đường tròn ngoại tiếp duy nhất.
Kết luận: chỉ có 1.
a, Thay m = 1 vào phương trình trên ta được
phương trình có dạng : \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)
b, Để phương trình có nghiệm kép \(\Delta=0\)
\(\Delta=9-4\left(m-1\right)=9-4m+4=0\Leftrightarrow13-4m=0\Leftrightarrow m=\frac{13}{4}\)
c, Để 2 nghiệm của pt là độ dài hcn khi 2 nghiệm đều dương
\(\hept{\begin{cases}\Delta=9-4\left(m+1\right)>0\\x_1+x_2=-\frac{b}{a}=3>0\\x_1x_2=\frac{c}{a}=m-1>0\end{cases}\Leftrightarrow1< m< \frac{13}{4}}\)
Diện tích hình chữ nhật là : \(x_1x_2=2\Leftrightarrow m-1=2\Leftrightarrow m=3\)( tmđk )
b1 lấy 12612211 x 2
KQ là chữ số của M
tính B kq
B=1870/9
Lời giải:
Dễ thấy \(\Delta>0\) nên theo định lý Viete phương trình luôn có hai nghiệm \(x_1,x_2\) thỏa mãn:
\(\left\{\begin{matrix} x_1+x_2=-p\\ x_1x_2=-228p\end{matrix}\right.\)
Từ đây suy ra hai nghiệm là hai nghiệm nguyên một âm một dương. Giả sử \(x_1 >0,x_2<0\), đặt \(x_1=a>0,-x_2=b>0\).
Ta có \(\left\{\begin{matrix} b-a=p\\ ab=228p\end{matrix}\right.\Rightarrow b(b-a)=bp\Leftrightarrow b^2=bp+228p\vdots p\rightarrow b\vdots p\)
\(\rightarrow bp+228p\vdots p^2\rightarrow b+228\vdots p\)
Mà \(b\vdots p\Rightarrow 228\vdots p\Rightarrow p\in \left\{2,3,19\right\}\)
Thử lại thu được $p=19$ thỏa mãn.