K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2022

a) Ta có: \(sin^2x+sin^2\left(90-x\right)=sin^2x+cos^2x=1.\)

áp dụng: A = 2

b)Ta có: \(cos\left(x\right)=-cos\left(180-x\right)\)

áp dụng: B = 0

c) Ta có: \(tan\left(x\right)\cdot tan\left(90-x\right)=\frac{sinx}{cosx}\cdot\frac{sin\left(90-x\right)}{cos\left(90-x\right)}=\frac{sinx}{cosx}\cdot\frac{cosx}{sinx}=1\)

áp dụng: C = 1

27 tháng 3 2022

quá sai

23 tháng 3 2022

A=a2sin⁡90∘+b2cos⁡90∘+c2cos⁡180∘

 0 

 

B=3−sin2⁡90∘+2cos2⁡60∘−3tan2⁡45∘.

= 3 - 1 + 1/2 - 3 = -1/2

undefined

23 tháng 3 2022

What did you see at the zoo?

 I saw crocodiles.

27 tháng 3 2022

quá đúng

29 tháng 3 2022

1234567890-01234567890-=qưertyuiop[]\';;lkjhfgdsazxcvbnm,./\'l;[]7894561230.+-

18 tháng 7 2022

a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alpha Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}.

b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}.

Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}.

18 tháng 7 2022

a) Vì 90^{\circ}<\alpha<180^{\circ} nên \cos \alpha<0 mặt khác \sin ^{2} \alpha+\cos ^{2} \alpha=1 suy ra \cos \alpha=-\sqrt{1-\sin ^{2} \alpha}=-\sqrt{1-\dfrac{1}{9}}=-\dfrac{2 \sqrt{2}}{3}.

Do đó \tan \alpha=\dfrac{\sin \alpha}{\cos \alpha}=\dfrac{\dfrac{1}{3}}{-\dfrac{2 \sqrt{2}}{3}}=-\dfrac{1}{2 \sqrt{2}}.

b) Vì \sin ^{2} \alpha+\cos ^{2} \alpha=1 nên \sin \alpha=\sqrt{1-\cos ^{2} \alpha}=\sqrt{1-\dfrac{4}{9}}=\dfrac{\sqrt{5}}{3} và \cot \alpha=\dfrac{\cos \alpha}{\sin \alpha}=\dfrac{-\dfrac{2}{3}}{\dfrac{\sqrt{5}}{3}}=-\dfrac{2}{\sqrt{5}}.

c) Vì \tan \gamma=-2 \sqrt{2}<0 \Rightarrow \cos \alpha<0 mặt khác \tan ^{2} \alpha+1=\dfrac{1}{\cos ^{2} \alpha} nên \cos \alpha=-\sqrt{\dfrac{1}{\tan ^{2}+1}}=-\sqrt{\dfrac{1}{8+1}}=-\dfrac{1}{3}.
Ta có \tan \alpha=\dfrac{\sin \alpha}{\cos \alpha} \Rightarrow \sin \alpha=\tan \alpha \cdot \cos \alpha=-2 \sqrt{2} \cdot\left(-\dfrac{1}{3}\right)=\dfrac{2 \sqrt{2}}{3} \Rightarrow \cot \alpha=\dfrac{\cos \alpha}{\sin \alpha}=\dfrac{-\dfrac{1}{3}}{\dfrac{2 \sqrt{2}}{3}}=-\dfrac{1}{2 \sqrt{2}}.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Tam giác ABC vuông tại B nên ta có: \(\tan C = \frac{{AB}}{{CB}} \Leftrightarrow AB = \tan {32^ \circ }.(1 + x)\)

Tam giác ADB vuông tại B nên ta có: \(\tan D = \frac{{AB}}{{DB}} \Leftrightarrow AB = \tan {40^ \circ }.x\)

\(\begin{array}{l} \Rightarrow \tan {32^ \circ }.(1 + x) = \tan {40^ \circ }.x\\ \Leftrightarrow x.(\tan {40^ \circ } - \tan {32^ \circ }) = \tan {32^ \circ }\\ \Leftrightarrow x = \frac{{\tan {{32}^ \circ }}}{{\tan {{40}^ \circ } - \tan {{32}^ \circ }}}\\ \Leftrightarrow x \approx 2,9\;(km)\end{array}\)

\( \Rightarrow AB \approx \tan {40^ \circ }.2,92 \approx 2,45\;(km)\)

Vậy chiều cao của ngọn núi là 2,45 km.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Áp dụng định lí cosin trong tam giác ABC, ta có:

\(\begin{array}{l}{c^2} = {b^2} + {a^2} - 2ab\cos C\\ \Leftrightarrow {c^2} = 26,{4^2} + 49,{4^2} - 2.26,4.49,4\cos {47^ \circ }20'\\ \Rightarrow c \approx 37\end{array}\)

Áp dụng định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

\(\begin{array}{l} \Leftrightarrow \frac{{49,4}}{{\sin A}} = \frac{{26,4}}{{\sin B}} = \frac{{37}}{{\sin {{47}^ \circ }20'}}\\ \Rightarrow \sin A = \frac{{49,4.\sin {{47}^ \circ }20'}}{{37}} \approx 0,982 \Rightarrow \widehat A \approx {79^ \circ }\\ \Rightarrow \widehat B \approx {180^ \circ } - {79^ \circ } - {47^ \circ }20' = {53^ \circ }40'\end{array}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Gọi A là vị trí của khinh khí cầu, Pt là đường sườn đồi như hình.

Ta có:

Tại P, góc nâng của khinh khí cầu là \({62^ \circ }\)\( \Rightarrow \widehat P = {62^ \circ } - {32^ \circ } = {30^ \circ }\)

Tại Q, góc nâng của khinh khí cầu là \({70^ \circ }\)\( \Rightarrow \widehat {AQt} = {70^ \circ } - {32^ \circ } = {38^ \circ }\)

\( \Rightarrow \widehat {AQP} = {180^ \circ } - {38^ \circ } = {142^ \circ }\) và \(\widehat A = {180^ \circ } - {142^ \circ } - {30^ \circ } = {8^ \circ }\)

Áp dụng định lí sin trong tam giác APQ, ta có:

\(\begin{array}{l}\frac{{PQ}}{{\sin A}} = \frac{{QA}}{{\sin P}}\\ \Rightarrow QA = \sin P.\frac{{PQ}}{{\sin A}} = \sin {30^ \circ }.\frac{{60}}{{\sin {8^ \circ }}} \approx 215,56\;(m)\end{array}\)

Vậy khoảng cách từ Q đến khinh khí cầu là 215,56 m.

16 tháng 12 2022

huyh

16 tháng 12 2022

Do a, b, c là độ dài 3 cạnh của tam giác ABC nên \(a+b-c\ne0\). Như vậy, \(\dfrac{a^3+b^3-c^3}{a+b-c}=c^2\)

\(\Leftrightarrow a^3+b^3-c^3=c^2a+c^2b-c^3\) 

\(\Leftrightarrow a^3+b^3-c^2a-c^2b=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2-c^2\right)=0\) 

\(\Leftrightarrow a^2-ab+b^2-c^2=0\) (do \(a+b\ne0\))

\(\Leftrightarrow c^2=a^2+b^2-ab\) (1)

Mặt khác, theo định lý cosin, ta có \(c^2=a^2+b^2-2ab.\cos C\) (2)

Từ (1) và (2), ta thu được \(2\cos C=1\Leftrightarrow\cos C=\dfrac{1}{2}\Leftrightarrow\widehat{C}=60^o\)

Vậy \(\widehat{C}=60^o\)