Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}x^4+x^2y^2+\frac{1}{2}y^4-2x^2y^2\)
\(=\frac{1}{2}\left(x^4-2x^2y^2+y^4\right)=\frac{1}{2}\left(x^2-y^2\right)^2=\frac{1}{2}.4^2=8\)
Dễ chỉ ra được: 12(x^2 + y^2) = 25xy
suy ra 12 x^2 + 12 y^2 = 25xy khi đó ta được:
12(x+y)^2 = 49xy hay tìm ra được (x+y)^2 = 49xy/12
Tương tự tìm được (x-y)^2 = xy/12
thay vào A ta có: A^2 = 1/49, hay A = 1/7 hoặc A= -1/7
xin lỗi em mới học lớp 6 vào chtt nha tick mình nha các bạn của mình
Bài 3:
Ta có:
\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
Do đó:
\(A=3^4-1=80\)
Đkxđ : \(x+y\ne0\)
\(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)
\(\Rightarrow x-y=y\)
\(\Rightarrow x=2y\)
Thay x = 2y vào M có :
\(M=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Vậy ...
GT=>(2x-y)(x-2y)=0
Do 0<x<y nên x-2y<0
Do đó 2x-y=0 hay 2x=y
Thay y=2x vào E đượcE=-3
Ta có: \(2\left(x^2+y^2\right)=5xy\)
\(x^2+y^2=\frac{5}{2}xy\)
\(E^2=\left(\frac{x+y}{x-y}\right)^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}\)
Hay: \(\frac{\frac{5}{2}xy+2xy}{\frac{5}{2}xy+2xy}=\frac{4,5xy}{0,5xy}=9\)
\(\Rightarrow E=\sqrt{9}=\pm3\)
vì 0<x<y
=>E=3
\(2x^2+2y^2=5xy\)
=>\(2\left(x^2+2xy+y^2\right)=7xy\Leftrightarrow\left(x+y\right)^2=\frac{7xy}{2}\)
=>\(2\left(x^2-2xy+y^2\right)=xy\Leftrightarrow\left(x-y\right)^2=\frac{xy}{2}\)
\(A^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{7}{4}\)
Vì 0<x<y => A <0
=> A = \(\frac{\sqrt{7}}{2}\)