K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(2a^2+7ab+3b^2=0\)

=>\(2a^2+6ab+ab+3b^2=0\)

=>2a(a+3b)+b(a+3b)=0

=>(a+3b)(2a+b)=0

=>\(\left[\begin{array}{l}a+3b=0\\ 2a+b=0\end{array}\right.\Rightarrow\left[\begin{array}{l}a=-3b\\ b=-2a\end{array}\right.\)

TH1: a=-3b

\(\frac{8a-3b}{2a-b}-\frac{2a-5b}{2a+b}\)

\(=\frac{8\cdot\left(-3b\right)-3b}{2\left(-3b\right)-b}-\frac{2\cdot\left(-3b\right)-5b}{2\cdot\left(-3b\right)+b}=\frac{-24b-3b}{-6b-b}-\frac{-6b-5b}{-6b+b}\)

\(=\frac{-27}{-7}-\frac{-11}{-5}=\frac{27}{7}-\frac{11}{5}=\frac{135}{35}-\frac{77}{35}=\frac{58}{35}\)

TH2: b=-2a

\(\frac{8a-3b}{2a-b}-\frac{2a-5b}{2a+b}\)

\(=\frac{8a-3\cdot\left(-2a\right)}{2a-\left(-2a\right)}-\frac{2a-5\cdot\left(-2a\right)}{2a-2a}=\frac{14a}{4a}-\frac{12a}{0a}\)

=>Khi b=-2a thì biểu thức không có giá trị

8 tháng 9 2016

Ta luôn có 

\(x^2+2xy+y^2=\left(x+y\right)^2\) ( hẳng đẳng thức )

\(\Rightarrow A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)

\(=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(3a-2b\right)^2\)

\(=\left[\left(2a-3b\right)+\left(3a-2b\right)\right]^2\)

\(=\left(2a-3b-2b+3a\right)^2\)

\(=\left(a-b\right)^2\)

\(=10^2\)

\(=100\)

18 tháng 9 2018

a) \(a^2+25b^2+17+10b-8a=0\)

\(\Rightarrow a^2-8a+16+25b^2+10b+1=0\)

\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2=0\)

\(\left(a-4\right)^2\ge0\) với mọi a

\(\left(5b+1\right)^2\ge0\) với mọi b

\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2\ge0\) với mọi a,b

\(\left(a-4\right)^2+\left(5b+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)^2=0\\\left(5b+1\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-4=0\\5b+1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\5b=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-\dfrac{1}{5}\end{matrix}\right.\)

10 tháng 2 2019

\(2a^2+b^2=3ab\Leftrightarrow2a^2-3ab+b^2=0\Leftrightarrow\left(2a-b\right)\left(a-b\right)=0\)

\(\Leftrightarrow a-b=0\left(2a-b>0\right)\Leftrightarrow a=b\)

\(P=\frac{3a^2+2a^2}{5a^2-3a^2}=\frac{5a^2}{2a^2}=\frac{5}{2}\)

8 tháng 7 2019

\(10a^2+ab-3b^2=0\)

\(\Leftrightarrow10a^2+6ab-5ab-3b^2=0\)

\(\Leftrightarrow5a\left(2a-b\right)+3b\left(2a-b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(5a+3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\5a=-3b\end{matrix}\right.\)

\(b>a>0\Rightarrow2a=b\)

Thay vào ta có :

\(B=\frac{b-b}{3a-b}+\frac{10a-a}{3a+2a}=0+\frac{9a}{5a}=\frac{9}{5}\)

31 tháng 3 2020

\(P=\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(\frac{4a^2+b}{4a^2-b}+1\right)\)

\(=\left[\frac{2a+b}{\left(2a-b\right)\left(2a+b\right)}-\frac{3b}{\left(2a+b\right)\left(2a-b\right)}-\frac{2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right]:\frac{4a^2+b+4a^2-b}{4a^2-b}\)

\(=\frac{2a+b-3b-4a+2b}{4a^2-b}\cdot\frac{4a^2-b}{8a^2}\)

\(=\frac{-2a}{8a^2}\)

\(a< 0\Rightarrow-2a>0\Rightarrow\frac{-2a}{8a^2}>0\left(8a^2\ge0\right)\)

=> ĐFCM