\(P=\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(\frac{4a^2+b^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

\(P=\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(\frac{4a^2+b}{4a^2-b}+1\right)\)

\(=\left[\frac{2a+b}{\left(2a-b\right)\left(2a+b\right)}-\frac{3b}{\left(2a+b\right)\left(2a-b\right)}-\frac{2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right]:\frac{4a^2+b+4a^2-b}{4a^2-b}\)

\(=\frac{2a+b-3b-4a+2b}{4a^2-b}\cdot\frac{4a^2-b}{8a^2}\)

\(=\frac{-2a}{8a^2}\)

\(a< 0\Rightarrow-2a>0\Rightarrow\frac{-2a}{8a^2}>0\left(8a^2\ge0\right)\)

=> ĐFCM

29 tháng 12 2017

Sửa lại đề bài:  1 / 2a- b 

                   ( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)

mới lm đc nhé bn! 

a) ĐKXĐ: bn tự lm nhé ! 

bn biến đổi: 2a3-b+2a-a2b =  (2a-b)  + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1) 

rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0

29 tháng 12 2017

Bạn nào giúp tớ với!

30 tháng 9 2016

\(\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(1+\frac{4a^2+b^2}{4a^2-b^2}\right)\left(ĐK:2a\ne\pm b\right)\)

\(=\left(\frac{1}{2a-b}-\frac{3b}{\left(2b-b\right)\left(2a+b\right)}-\frac{2}{2a+b}\right):\frac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)

\(=\frac{2a+b-3b-2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\cdot\frac{\left(2a-b\right)\left(2a+b\right)}{8a^2}\)

\(=\frac{2a+b-3b-4a+2b}{8a^2}=\frac{-2a}{8a^2}=-\frac{1}{4a}\)

21 tháng 12 2019

a) \(A=\left(\frac{2}{2a-b}+\frac{6b}{b^2-4a^2}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)

\(=\left(\frac{2}{2a-b}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)

\(=\left(\frac{-2\left(b+2a\right)}{\left(b-2a\right)\left(b+2a\right)}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4\left(b-2a\right)}{\left(2a+b\right)\left(b-2a\right)}\right):\left(\frac{a\left(4a^2-b^2\right)}{4a^2-b^2}+\frac{4a^2+b^2}{4a^2-b^2}\right)\)

\(=\frac{-2b-4a+6b-4b+8a}{\left(b-2a\right)\left(b+2a\right)}:\frac{4a^3-ab^2+4a^2+b^2}{4a^2-b^2}\)

\(=\frac{4a}{\left(b-2a\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)

\(=\frac{-4a}{\left(2a-b\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)

\(=.\frac{-4a}{4a^3-ab^2+4a^2+b^2}\)

b)  ĐKXĐ: \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)

Ta thấy \(a=\frac{1}{3};b=2\)thỏa mãn điều kiện \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)nên thay vào A ta được:

bạn thay vào tự tính nhé mà cái phần rút gọn bạn vừa làm vừa check giùm bài mik nhé =)) sợ sai 

13 tháng 11 2016

Ta có :

\(4a^2+b^2-4ab=5ab-4ab\)

\(\Rightarrow\left(2a-b\right)^2=ab\)

Lại có : 

\(4a^2+b^2+4ab=5ab+4ab\)

\(\Rightarrow\left(2a+b\right)^2=9ab\)

\(\Rightarrow\left(2a+b\right)^2\left(2a-b\right)^2=ab.9ab\)

\(\left(4a^2-b^2\right)^2=\left(3ab\right)^2\)

Mà \(2a>b>0\Rightarrow\hept{\begin{cases}4a^2-b^2>0\\a>0;b>0\rightarrow3ab>0\end{cases}}\)

\(\Rightarrow4a^2-b^2=3ab\)

\(\Rightarrow A=\frac{ab}{3ab}=\frac{1}{3}\)

Vậy ...

5 tháng 4 2017

Mình mới học lớp 5 thôi nên không biết gì .

~~~ Chúc bạn học giỏi ~~~

15 tháng 1 2018

Ta có: \(\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}\ge\frac{1}{25}\Leftrightarrow\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}-\frac{1}{25}\ge0\)

\(\Leftrightarrow\frac{25a^2+25b^2-12a^2-25ab-12b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

\(\Leftrightarrow\frac{13a^2-25ab+13b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

\(\Leftrightarrow\frac{13\left(a^2-2.\frac{25}{26}ab+\frac{625}{676}b^2\right)+\frac{51}{52}b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

\(\Leftrightarrow\frac{13\left(a-\frac{25}{26}b\right)^2+\frac{51}{52}b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

Do a, b > 0 nên cả tử và mẫu của phân thức bên vế trái đều lớn hơn 0.

Vậy bất đẳng thức cuối là đúng hay \(\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}\ge\frac{1}{25}\forall a,b>0;a\ne-\frac{3b}{4};b\ne-\frac{4b}{3}\)

24 tháng 3 2020

a) \(a\ne0;a\ne1\)

\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)

\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)

\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

M>0 khi 4a>0 => a>0

Kết hợp với ĐKXĐ

Vậy M>0 khi a>0 và a\(\ne\)1

c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)

Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)

Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)

Vậy \(Max_M=1\)khi a=2

28 tháng 3 2023

mik thắc mắc tại sao 3a lại mất vậy