Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4+4x^3y+6x^2y^2+4xy^3+y^4-x-y-10\)
\(=\left(x^4+2x^3y+x^2y^2\right)+\left(2x^3y+4x^2y^2+2xy^3\right)+\left(x^2y^2+2xy^3+y^4\right)-\left(x+y\right)-10\)
\(=x^2\left(x^2+2xy+y^2\right)+2xy\left(x^2+2xy+y^2\right)+y^2\left(x^2+2xy+y^2\right)-\left(x+y\right)-10\)
\(=\left(x^2+2xy+y^2\right)\left(x^2+2xy+y^2\right)-\left(x+y\right)-10\)
\(=\left(x+y\right)^2\left(x+y\right)^2-\left(x+y\right)-10\)
\(=\left(x+y\right)^4-\left(x+y\right)-10\)
\(=2^4-2-10\) \(=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\hept{\begin{cases}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2018}\ge0\forall y\end{cases}\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2018}\ge0\forall x,y}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2\right)^4=0\\\left(2y-1\right)^{2018}=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\2y=1\end{cases}}}\Rightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Khi đó : \(M=11.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2=\frac{11.4}{2}+\frac{4.2}{4}=22+2=24\)
Vậy M = 24
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay x = -2, y = 2/3 vào đơn thức trên, ta được:
\(\frac{1}{2}\cdot\left(-2\right)^2\cdot\left(\frac{2}{3}\right)^3-4\cdot\left(-2\right)\cdot\frac{2}{3}+5=10\frac{25}{27}\)
\(2\left|2y+4\right|\ge0;\left|-1\right|=1\Rightarrow2\left|2y+4\right|+\left|-1\right|>0\)
Mà \(2\left|2y+4\right|+\left|-1\right|=0\) ( vô lý )
Vậy không tồn tại y thỏa mãn nên không xác định A