K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

a) A = \(\frac{101}{19}.\) \(\frac{61}{218}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)

        \(\frac{101}{218}.\frac{61}{19}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)

        =\(\frac{101}{218}.\left(\frac{61}{19}-\frac{42}{19}\right)+\frac{117}{218}\)

        =\(\frac{101}{218}.\frac{19}{19}+\frac{117}{218}\)

        =\(\frac{101}{218}.1+\frac{117}{218}\)

        =\(\frac{101}{218}+\frac{117}{218}\)

        =\(\frac{218}{218}\)\(=1\)

b) B = \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).\left(\frac{4}{5}-\frac{3}{4}-\frac{1}{20}\right)\)

        =     \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right)\)\(.\left(\frac{1}{20}-\frac{1}{20}\right)\)

        \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).0\)

        = \(0\)

a) Để A nhận giá trị nguyên thì: \(-n-7⋮n-2\)

\(\Rightarrow-n-7+n-2⋮n-2\)

\(\Rightarrow-9⋮n-2\Rightarrow n-2\inƯ\left(-9\right)\)

Mà \(Ư\left(-9\right)=\left\{-1;-9;1;9\right\}\)

\(\Rightarrow n-2\in\left\{-1;-9;1;9\right\}\)

\(\Rightarrow n\in\left\{1;-7;3;11\right\}\)

b) Để B có giá trị nguyên thì :\(n-6⋮n+5\)

\(\Rightarrow n-6-\left(n+5\right)⋮n+5\)

\(\Rightarrow n-6-n-5⋮n+5\)

\(\Rightarrow-11⋮n+5\Rightarrow n+5\inƯ\left(-11\right)\)

Mà \(Ư\left(-11\right)=\left\{-11;-1;1;11\right\}\)

\(\Rightarrow n+5\in\left\{-1;-11;1;11\right\}\)

\(\Rightarrow n\in\left\{-6;-16;-4;6\right\}\)

(Mấy dạng này bạn cứ làm sao để bỏ n là được)

13 tháng 2 2020

Cảm ơn bạn .Mình sẽ

27 tháng 9 2019

a, 410.815=220.245=265

b,415.530=230.530=(2.5)30=1030

c, \(\frac{2^{10^{ }}.13+2^{10^{ }}.65}{2^{8^{ }}.104}\)

=\(\frac{2^{10}\left(13+65\right)}{2^8.2^2.26}\) =\(\frac{2^{10}.78}{2^{10}.26}\) =\(\frac{78}{26}\)=3

5 tháng 4 2019

\(C=2.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)

 \(=2.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

  \(=2.\left(1-\frac{1}{100}\right)\)

 \(=2.\frac{99}{100}=\frac{198}{100}\)

5 tháng 4 2019

C = \(3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)

C = \(3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

C = 3 \(\left(1-\frac{1}{100}\right)\)

C = 3 \(\left(\frac{100}{100}-\frac{1}{100}\right)\)

C = \(3.\frac{99}{100}\)

C = \(\frac{297}{100}\)

\(\left(3x-1\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)

\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)

\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)

27 tháng 12 2018

a, ĐỂ \(\frac{24}{2n+5}\)là số nguyên 

\(\Rightarrow24⋮2n+5\Rightarrow2n+5\inƯ\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

2n + 5 = 1 => 2n = -4 => n = -2 

2n + 5 = -1 => n = -3 

... tương tự thay vào nhé ! 

25 tháng 9 2019

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)

\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4.4...100.101}\)

\(=\frac{\left(1.2.3...100\right)\left(1.2.3...100\right)}{\left(1.2.3..100\right)\left(2.3.4...101\right)}=\frac{1}{101}\)