\(^{\frac{x^2-25}{^{x^2-10x^2+25x}}:\frac{y-2}{y^2-y-2}}\)

b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

đề sai 

cho M: \(\left(\frac{x^2-25}{x^3-10x^2+25}\right):\left(\frac{y-2}{y^2-y-2}\right)\)

15 tháng 2 2020

\(x^2+9y^2-4xy-2xy+\left|x-3\right|=0\)

\(\Leftrightarrow\left(x-3y\right)^2+\left|x-3\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=3y\\x=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\) Thay vào M rồi tính nha bạn dễ ẹc

AH
Akai Haruma
Giáo viên
2 tháng 3 2020

Lời giải:

ĐK: $x\neq 5;x\neq 0; y\neq 2; y\neq -1$

\(M=\frac{x^2-25}{x^3-10x^2+25x}:\frac{y-2}{(y-2)(y+1)}=\frac{(x-5)(x+5)}{x(x^2-10x+25)}:\frac{1}{y+1}\)

\(=\frac{(x-5)(x+5)}{x(x-5)^2}:\frac{1}{y+1}=\frac{x+5}{x(x-5)}.(y+1)=\frac{(x+5)(y+1)}{x(x-5)}\)

--------------

$x^2+9y^2-4xy=2xy-|x-3|$

$\Leftrightarrow x^2+9y^2-6xy=-|x-3|$

$\Leftrightarrow (x-3y)^2+|x-3|=0$

Dễ thấy $(x-3y)^2\geq 0; |x-3|\geq 0$ với mọi $x,y\in $ĐKXĐ nên để tổng của chúng bằng $0$ thì:

$x-3y=x-3=0\Rightarrow x=3; y=1$

Khi đó: $M=\frac{(3+5)(1+1)}{3(3-5)}=\frac{-8}{3}$

19 tháng 7 2016

1) \(\frac{xy}{x^2+y^2}=\frac{3}{8}\Leftrightarrow3x^2+3y^2-8xy=0\)

Nhận thấy điều kiện của phương trình là x,y cùng khác 0

Chia cả hai vê của phương trình trên cho \(y^2\ne0\)được :

\(3\left(\frac{x}{y}\right)^2-8\left(\frac{x}{y}\right)+3=0\). Đặt \(a=\frac{x}{y}\), phương trình trở thành : \(3a^2-8a+3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{4+\sqrt{7}}{3}\\x=\frac{4-\sqrt{7}}{3}\end{cases}}\)

Từ đó rút ra được tỉ lệ của \(\frac{x}{y}\). Bạn thay vào tính A là được :)

2) \(\frac{x^9-1}{x^9+1}=7\Leftrightarrow\frac{x^9-1}{x^9+1}-1=6\Leftrightarrow\frac{-2}{x^9+1}=6\Leftrightarrow x^9=\frac{-2}{6}-1=-\frac{4}{3}\)

Ta có \(A=\frac{\left(x^9\right)^2-1}{\left(x^9\right)^2+1}\). Thay giá trị của x9 vừa tính ở trên vào là được :)

4 tháng 8 2016

\(\frac{xy}{x^2+y^2}=\frac{3}{8}\Rightarrow xy=\frac{3}{8}\left(x^2+y^2\right)\)

=>\(A=\frac{x^2+y^2+\frac{3}{4}\left(x^2+y^2\right)}{x^2+y^2-\frac{3}{4}\left(x^2+y^2\right)}=\frac{\frac{7}{4}\left(x^2+y^2\right)}{\frac{1}{4}\left(x^2+y^2\right)}=7\)

2 tháng 9 2017

X=2007 đúng 100%