Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK: $x\neq 5;x\neq 0; y\neq 2; y\neq -1$
\(M=\frac{x^2-25}{x^3-10x^2+25x}:\frac{y-2}{(y-2)(y+1)}=\frac{(x-5)(x+5)}{x(x^2-10x+25)}:\frac{1}{y+1}\)
\(=\frac{(x-5)(x+5)}{x(x-5)^2}:\frac{1}{y+1}=\frac{x+5}{x(x-5)}.(y+1)=\frac{(x+5)(y+1)}{x(x-5)}\)
--------------
$x^2+9y^2-4xy=2xy-|x-3|$
$\Leftrightarrow x^2+9y^2-6xy=-|x-3|$
$\Leftrightarrow (x-3y)^2+|x-3|=0$
Dễ thấy $(x-3y)^2\geq 0; |x-3|\geq 0$ với mọi $x,y\in $ĐKXĐ nên để tổng của chúng bằng $0$ thì:
$x-3y=x-3=0\Rightarrow x=3; y=1$
Khi đó: $M=\frac{(3+5)(1+1)}{3(3-5)}=\frac{-8}{3}$
\(x^2+9y^2-4xy-2xy+\left|x-3\right|=0\)
\(\Leftrightarrow\left(x-3y\right)^2+\left|x-3\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\x=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\) Thay vào M rồi tính nha bạn dễ ẹc
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
\(\frac{2}{5}x\left(y-1\right)-\frac{2}{5}y\left(y-1\right)\)
\(=\left(y-1\right)\left[\left(\frac{2}{5}x-\frac{2}{5}y\right)\right]\)
\(=\left(y-1\right)\frac{2}{5}\left(x-y\right)\)
đề sai
cho M: \(\left(\frac{x^2-25}{x^3-10x^2+25}\right):\left(\frac{y-2}{y^2-y-2}\right)\)