Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sin x=\cos\left(90^0-x\right)\)
\(\Rightarrow M=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin^245^0\)
\(=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\sin^245^0\)
\(=1+1+1+\left(\frac{\sqrt{2}}{2}\right)^2=3+\frac{1}{2}=\frac{7}{2}\)
\(a,A=\sin^234^0+\cos^234^0+\dfrac{\cot42^0}{\cot42^0}=1+1=2\\ b,B=\left(\cos^213^0+\sin^277^0\right)+\dfrac{3\cot64^0}{\cot64^0}+2\cot32^0\cdot\tan32^0\\ B=1+3+2\cdot1=6\\ c,B=\dfrac{5\cot35^0}{\cot35^0}-2\left(\sin^261^0-\cos^261^0\right)=5-2\cdot1=3\)
Ta có:
\(C=sin^22^0+sin^24^0+...+sin^288^0\)
\(C=\left(sin^22^0+sin^288^0\right)+\left(sin^24^0+sin^286^0\right)+...+\left(sin^244^0+sin^246^0\right)\)
\(C=\left(sin^22^0+cos^22^0\right)+\left(sin^24^0+cos^24^0\right)+...+\left(sin^244^0+cos^244^0\right)\)
\(C=1+1+...+1\) \(C=22\)
\(ADCT:\sin^2\alpha+\cos^2\alpha=1\)
\(A=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin45^0\)
\(A=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\frac{\sqrt{2}}{2}\)
\(A=1+1+1+\frac{\sqrt{2}}{2}=\frac{6+\sqrt{2}}{2}\)
Câu b lm tương tự
Lời giải:
Ta biết rằng $\sin a=\cos (90-a)$ và $\sin ^2a+\cos ^2a=1$
Do đó:
\(A=\sin ^242+\sin ^243+....+\sin ^248=(\sin ^242+\sin ^248)+(\sin ^243+\sin ^247)+(\sin ^244+\sin ^246)+\sin ^245\)
\(=(\sin ^242+\cos ^242)+(\sin ^243+\cos ^243)+(\sin ^244+\cos ^244)+\sin ^245\)
\(=1+1+1+(\frac{\sqrt{2}}{2})^2=\frac{7}{2}\)
Ta có: \(\cos33^o=\sin57^o\)
Và \(\sin^244^o=\cos^246^o\)
Thay vào A, ta có;
\(A=\sin57^o-\sin57^o+\cos^246^o+\sin^246^o\)
A=1
\(A=\left(sin^247^0+cos^247^0\right)-2+1=1+1-2=0\)