\(\left(-1\frac{1}{2}\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2019

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{9}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{8}{9}\)

\(A=\frac{1}{9}\)

17 tháng 9 2019

\(\Rightarrow\)A= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}\frac{8}{9}\)

\(\Rightarrow\)A=\(\frac{1.2.3.4.5.6.7.8}{2.3.4.5.6.7.8.9}\)

\(\Rightarrow\)A=\(\frac{1}{9}\)

HỌC TỐT!!!

15 tháng 10 2018

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)

+) \(\frac{y+z}{x}=2\)

=> y+z=2x

+) \(\frac{x+z}{y}=2\)

=>x+z=2y

+)\(\frac{x+y}{z}=2\)

=> x+y=2z 

Mà B= ( 1+x/y)(1+y/z) (1+z/x)

      B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

      B= \(\frac{2z.2x.2y}{xyz}\)

      B= 8

~ Chúc bạn học tốt ~

Tích và kết bạn với mình nha!

15 tháng 10 2018

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Lại có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

(+) Xét x + y + z \(\ne\) 0

Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)

=\(\left(6.\frac{1}{4}+1+1\right):\left(\frac{-1}{2}-1\right)\)

=\(\frac{5}{2}\):\(\frac{\left(-3\right)}{2}\)=\(\frac{-10}{6}=\frac{-5}{3}\)

hok tốt

29 tháng 3 2019

\(\left[6.\left(-\frac{1}{2}\right)^2-2.\left(-\frac{1}{2}\right)+1\right].\left(-\frac{1}{2}-1\right)\)

\(=\left(6.\frac{1}{4}-\left(-1\right)+1\right).\left(-\frac{3}{2}\right)\)

\(=\frac{3}{2}.\left(-\frac{3}{2}\right)\)

\(=-\frac{9}{4}\)

~Moon~

25 tháng 3 2020

a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10

Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)

hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

27 tháng 3 2020
Cam on ban
14 tháng 9 2019

                                                              Bài giải

\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\left(1-\frac{1}{2012}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2011}{2012}\)

\(=\frac{1\cdot2\cdot3\cdot...\cdot2011}{2\cdot3\cdot4\cdot...\cdot2012}\)

\(=\frac{1}{2012}\)

14 tháng 9 2019

                                                              Bài giải

\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\left(1-\frac{1}{2012}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2011}{2012}\)

\(=\frac{1\cdot2\cdot3\cdot...\cdot2011}{2\cdot3\cdot4\cdot...\cdot2012}\)         ( Sử dụng phương pháp khử )

\(=\frac{1}{2012}\)

30 tháng 11 2018

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)(ĐK:a,b,c khác 0)

TH1: a+b+c=0=> a=-(b+c)=> b=-(a+c)=> c=-(a+b)

\(\Rightarrow B=\left(\frac{a-a-c}{a}\right)\left(\frac{c-b-c}{c}\right)\left(\frac{b-a-b}{b}\right)=\frac{-c}{a}.\left(-\frac{b}{c}\right).\left(-\frac{a}{b}\right)=-1\)

xét a+b+c khác 0

=> a=b=c

=> \(B=\left(1+\frac{a}{a}\right).\left(1+\frac{b}{b}\right).\left(1+\frac{c}{c}\right)=2^3=8\)

Vậy B=-1 hay B=8

p/s: bài này gây khá nhiều tranh cãi :> 

19 tháng 8 2019

Lời giải :

\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(A=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}\)

Theo giả thiết : \(a+b+c=0\Leftrightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

Thay vào A ta được :

\(A=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)

Vậy...

19 tháng 8 2019

Giải hộ mình nha

20 tháng 2 2019

a) \(\left[-\frac{1}{2}\left(a-1\right)x^3y^4z^2\right]^5=\frac{-\left(a-1\right)^5}{32}x^{15}y^{20}z^{10}\)
Hệ số: \(\frac{-\left(a-1\right)^5}{32}\). Bậc của đơn thức: \(15+20+10=45\)
b) \(\left(a^5b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right)=-a^5b^5cx^5y^2z^6\)

Hệ số: \(-a^5b^5c\). Bậc của đơn thức: \(5+2+6=13\)
c) \(\left(-\frac{9}{10}a^3x^2y\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=\left(-\frac{9}{10}a^3x^2y\right)\left(-\frac{125}{27}a^3x^{15}y^6z^3\right)\)\(=\frac{25}{6}a^6x^{17}y^7z^3\)

Hệ số: \(\frac{25}{6}a^6\). Bậc của đơn thức:\(17+7+3=27\)