K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

Ta có \(\frac{x}{3}=\frac{-y}{5}\)=> \(x=\frac{-3y}{5}\)

Thay \(x=\frac{-3y}{5}\)vào A, ta có:

\(\frac{5\left(\frac{-3y}{5}\right)^2+3y^2}{10\left(\frac{-3y}{5}\right)^2-3y^2}=\frac{5\left(\frac{9y^2}{25}\right)+3y^2}{10\left(\frac{9y^2}{25}\right)-3y^2}=\frac{\frac{45y^2}{25}+3y^2}{\frac{90y^2}{25}-3y^2}=\frac{\frac{45y^2+75y^2}{25}}{\frac{90y^2-75y^2}{25}}=\frac{\frac{120y^2}{25}}{\frac{25y^2}{25}}\)\(\frac{120y^2}{25}.\frac{25}{25y^2}=\frac{120y^2}{25y^2}=4,8\)

Vậy giá trị của A là 4,8 khi \(\frac{x}{3}=\frac{-y}{5}\)

10 tháng 8 2020

Bài làm:

a) Ta có: \(\left(-\frac{3}{8}x^2z\right).\left(\frac{2}{3}xy^2z^2\right).\left(\frac{4}{5}x^3y\right)\)

\(=-\frac{1}{5}x^6y^3z^3\)

b) Tại x=-1 ; y=-2 ; z=3 thì giá trị đơn thức là:

\(-\frac{1}{5}.\left(-1\right)^6.\left(-2\right)^3.3^3=\frac{216}{5}\)

10 tháng 8 2020

a) Ta có : \(\left(\frac{-3}{8}x^2z\right)\cdot\frac{2}{3}xy^2z^2\cdot\frac{4}{5}x^3y=\left(-\frac{3}{8}\cdot\frac{2}{3}\cdot\frac{4}{5}\right)\cdot x^2xx^3\cdot y^2y\cdot zz^2=-\frac{1}{5}x^6y^3z^3\)

b) Với x = -1 ; y = -2 , z = 3

Thế vào ba đơn thức trên và đơn thức tích ta được :

\(\frac{-3}{8}x^2z=\frac{-3}{8}\left(-1\right)^2\cdot3=\frac{-3}{8}\cdot1\cdot3=\frac{-9}{8}\)

\(\frac{2}{3}xy^2z^2=\frac{2}{3}\cdot\left(-1\right)\cdot\left(-2\right)^2\cdot3^2=\frac{2}{3}\left(-1\right)\cdot4\cdot9=-24\)

\(\frac{4}{5}x^3y=\frac{4}{5}\left(-1\right)^3\cdot\left(-2\right)=\frac{4}{5}\left(-1\right)\left(-2\right)=\frac{8}{5}\)

\(-\frac{1}{5}x^6y^3z^3=-\frac{1}{5}\left(-1\right)^6\left(-2\right)^3\cdot3^3=-\frac{1}{5}\cdot1\cdot\left(-8\right)\cdot27=\frac{216}{5}\)

23 tháng 8 2016

Đặt \(\frac{x}{3}=\frac{y}{5}=n\Rightarrow x=3n;y=5n\)

\(\Rightarrow A=\frac{5.3^2n^2+3.5^2n^2}{10.3^2n^2-3.5^2n^2}=\frac{n^2\left(45+75\right)}{n^2\left(90-75\right)}=\frac{n^2.120}{n^2.25}=\frac{24}{5}\)

23 tháng 8 2016

\(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\)

Thay 3y = 5x ; ta được: 

\(A=\frac{5x^2+5x^2}{10x^2-5x^2}=\frac{2\times5x^2}{2\times5x^2-5x^2}=\frac{2\times5x^2}{5x^2\times\left(2-1\right)}=\frac{2\times5x^2}{5x^2\times1}=2\)  

13 tháng 7 2017

f(x)=9x3-1/3x+3x2-3x+1/3x2-1/9x3-3x2-9x+27+3x

    = 9x3-1/9x3+3x2+1/3x2-3x2-1/3-3x-9x+3x+27

   = 80/9x3+1/3x2-28/3x+27

19 tháng 3 2018

đặt \(\frac{x}{3}=\frac{y}{5}=k\)(k khac 0)

 Từ  \(\frac{x}{3}=k\)=>x=3k

        \(\frac{y}{5}=k\)=>y=5k

roi ban thay vao tinh

14 tháng 5 2016

Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

\(A=\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5.\left(3k\right)^2+3.\left(5k\right)^2}{10.\left(3k\right)^2-3.\left(5k\right)^2}=\frac{5.3^2.k^2+3.5^2.k^2}{10.3^2.k^2-3.5^2.k^2}\)

\(A=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{\left(45+75\right).k^2}{\left(90-75\right).k^2}=\frac{120k^2}{15k^2}=\frac{120}{15}=8\)

Vậy A=8
 

4 tháng 3 2020

a)\(15\cdot2^3\cdot\left(-2\right)^3\cdot3^3=-25920\)

b)\(\frac{-1}{3}\cdot1^2\cdot\left(-\frac{1}{2}\right)^3\cdot\left(-2\right)^3=\frac{-1}{3}\)

c)\(\frac{2}{5}a\cdot\left(-3\right)^3\cdot\left(-1\right)^6\cdot2=\frac{-108}{5}a\)

21 tháng 9 2020

\(\hept{\begin{cases}\frac{4x}{5}=\frac{3y}{2}\\\frac{4y}{5}=\frac{5z}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}=\frac{y}{\frac{2}{3}}\\\frac{y}{\frac{5}{4}}=\frac{z}{\frac{3}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}\times\frac{1}{\frac{3}{2}}=\frac{y}{\frac{2}{3}}\times\frac{1}{\frac{3}{2}}\\\frac{y}{\frac{5}{4}}\times\frac{1}{\frac{4}{5}}=\frac{z}{\frac{3}{5}}\times\frac{1}{\frac{4}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{15}{8}}=\frac{y}{1}\\\frac{y}{1}=\frac{z}{\frac{12}{25}}\end{cases}}\Rightarrow\frac{x}{\frac{15}{8}}=\frac{y}{1}=\frac{z}{\frac{12}{25}}\)

2x - 3y + 4z = 5, 34

=> \(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}\)và 2x - 3y + 4z = 5, 34

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}=\frac{2x-3y+4z}{\frac{15}{4}-3+\frac{48}{25}}=\frac{5,34}{\frac{267}{100}}=2\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot\frac{15}{8}=\frac{15}{4}\\y=2\cdot1=2\\z=2\cdot\frac{12}{25}=\frac{24}{25}\end{cases}}\)

Vậy ...

b) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)và 2x + 3y - z = 50

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)

\(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)

\(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)

\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)

Vậy ...

24 tháng 3 2018

\(a)\)  Ta có : 

\(\frac{x}{18}=\frac{y}{9}\)\(\Leftrightarrow\)\(\frac{x}{2}=y\)

\(\Rightarrow\)\(x=2y\)

Thay \(x=2y\) vào \(A=\frac{2x-3y}{2x+3y}\) ta được : 

\(A=\frac{2.2y-3y}{2.2y+3y}=\frac{4y-3y}{4y+3y}=\frac{y}{7y}=\frac{1}{7}\)

Vậy ... ( tự kết luận ) 

Chúc bạn học tốt ~ 

24 tháng 3 2018

ỳgyjwegfeukwfhưe