\(\frac{^{8^{10}}.15^{16}}{12^{15}.25^8}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

loading...

2 tháng 8 2023

C = \(\dfrac{\dfrac{1}{9}-\dfrac{5}{6}-4}{\dfrac{7}{12}-\dfrac{1}{36}-10}\)

C = \(\dfrac{\dfrac{6-45-216}{54}}{\dfrac{21-1-360}{36}}\)

C = \(\dfrac{\dfrac{-85}{18}}{-\dfrac{85}{9}}\)

C = \(\dfrac{1}{2}\)

19 tháng 6 2015

rõ ràng ta chỉ cần so sánh giữa \(15^{30}+16^{12}+17^{50}-16^8\) và \(17^{30}+16^8+15^{50}-16^{12}\)

Áp dụng tính chất nếu a>b thì a-b>0 ta được:

   \(15^{30}+16^{12}+17^{50}-16^8\)\(\left(17^{30}+16^8+15^{50}-16^{12}\right)\)

\(\left(17^{50}-17^{30}\right)+\left(16^{12}+16^{12}\right)+\left(15^{30}-15^{50}\right)-\left(16^8+16^8\right)\)

\(\left(17^{50}-17^{30}\right)+\left(15^{30}-15^{50}\right)+2\left(16^{12}-16^8\right)\)

Vì 17^50 - 17^30 > l 15^30 - 15^50 l 

nên \(\left(17^{50}-17^{30}\right)+\left(15^{30}-15^{50}\right)>0\)

=>\(15^{30}+16^{12}+17^{50}-16^8\)\(17^{30}+16^8+15^{50}-16^{12}\)

=> Phân số thứ nhất > 1 và p/s thứ hai < 1

Lúc này bạn tự so sánh nha

\(a.\frac{27.45+27.55}{2+4+6+...+14+16+18}=\frac{27.100}{\frac{\left(2+18\right).9}{2}}=30\)

\(b.\frac{26.108-26.12}{32-28+24-20+16-12+8-4}=\frac{26\left(108-12\right)}{\left(32-28\right).4}=\frac{26.96}{4.4}=156\)

\(c.\frac{27.4500+135.550.2}{2+4+6+...+14+16+18}=\frac{270.450+270.550}{\frac{\left(2+8\right).9}{2}}\)

\(d.\frac{48.700-24.45.20}{45-40+35-30+25-20+15-10+5}=\frac{48.700-48.450}{5.5}\)\(=\frac{48\left(700-450\right)}{25}=\frac{48.250}{25}=480\)

#ĐinhBa

1 tháng 4 2016

Cây a, bạn nhân cả 2 vế với 3

Lấy vế nhân với 3 trừ đi ban đầu tất cả chia 2

b) Tính như bình thường

Câu c hình như sai đề

1 tháng 4 2016

a) \(1-\frac{1}{3^{101}}\)

14 tháng 3 2018

a=8/9+15/16+24/25+....+2499/2500

a=(1-1/9)+(1-1/16)+(1-1/25)+....+(1-1/2500)

a=1-1/9+1-1/16+1-1/25+....+1-1/2500

a=(1+1+...+1)-(1/9+1/16+1/25+....+1/2500)