Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{63^2-47^2}{215^2-105^2}\)
\(=\frac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)
\(=\frac{16.110}{110.320}\)
\(=\frac{16}{320}=\frac{1}{20}\)
\(\frac{63^2-47^2}{215^2-105^2}\)
\(=\frac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)
\(=\frac{16\cdot110}{110\cdot320}\)
\(=\frac{1}{20}\)
\(A=\frac{63^2-47^2}{215^2-105^2}=\frac{\left(63+47\right)\left(63-47\right)}{\left(215+105\right)\left(215-105\right)}=\frac{110\cdot16}{320\cdot110}=\frac{1}{20}\)
\(B=\frac{437^2-363^2}{537^2-463^2}=\frac{\left(473-363\right)\left(473+363\right)}{\left(573-463\right)\left(573+463\right)}=\frac{110\cdot836}{110\cdot1036}=\frac{836}{1036}=\frac{4\cdot209}{4\cdot234}=\frac{209}{234}\)
Trả lời:
\(A=\frac{63^2-47^2}{215^2-105^2}=\frac{\left(63-47\right).\left(63+47\right)}{\left(215-105\right).\left(215+105\right)}=\frac{16.110}{110.320}=\frac{1}{20}\)
\(B=\frac{437^2-363^2}{537^2-463^2}=\frac{\left(437-363\right).\left(437+363\right)}{\left(537-463\right).\left(537+463\right)}=\frac{74.800}{74.1000}=\frac{4}{5}\)
Học tốt
1) \(63^2-47^2=\left(63+47\right)\left(63-47\right)=110.16=1760\)
2) \(127^2+146.127+73^2=\left(127+73\right)^2=200^2=40000\)
3) \(215^2-105^2=\left(215-105\right)\left(215+105\right)=110.320=35200\)
4) mk chỉnh lại đề:
\(\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)...\left(4^{256}+1\right)\)
\(=\frac{1}{3}\left(4-1\right)\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)...\left(4^{256}+1\right)\)
\(=\frac{1}{3}\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)...\left(4^{256}+1\right)\)
\(=\frac{1}{3}\left(4^4-1\right)\left(4^4+1\right)...\left(4^{256}+1\right)\)
\(=\frac{1}{3}\left(4^{512}-1\right)\)
A=\(\frac{63^2-47^2}{215^2-105^2}\)
A=\(\frac{\left(63-47\right).\left(63+47\right)}{\left(215-105\right).\left(215+105\right)}\)
A=\(\frac{16.110}{110.320}\)
A=\(\frac{1760}{35200}\)
\(A=\frac{1}{20}\)
B=\(\frac{437^2-363^2}{537^2-463^2}\)
B=\(\frac{\left(437-363\right).\left(437+363\right)}{\left(537-463\right).\left(537+463\right)}\)
B=\(\frac{74.800}{74.1000}\)
B=\(\frac{4}{5}\)
\(\frac{63^2-47^2}{215^2-105^2}=\) \(\frac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)
\(=\frac{16.110}{110.320}=\frac{16}{320}\)\(=\frac{1}{20}\)
các câu kia làm tương tự nha
B3.
a) =\(\frac{\left(63+47\right).\left(63-47\right)}{\left(215+105\right).\left(215-105\right)}\) b) =\(\frac{\left(437+363\right).\left(437-363\right)}{\left(537+463\right).\left(537-463\right)}\)
=\(\frac{110.16}{320.110}\) =\(\frac{800.74}{1000.74}\)
=\(\frac{1}{20}\) =\(\frac{4}{5}\)
a) \(\dfrac{63^2-47^2}{215^2-105^2}\)
= \(\dfrac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)
= \(\dfrac{16.110}{110.320}=\dfrac{16}{320}=\dfrac{1}{20}\)
b) \(\dfrac{437^2-363^2}{537^2-463^2}\)
= \(\dfrac{\left(437-363\right)\left(437+363\right)}{\left(537-463\right)\left(537+463\right)}\)
= \(\dfrac{74.800}{74.1000}=\dfrac{800}{1000}=\dfrac{4}{5}\)
2)
A = \(26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50=100\)
B = \(27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52=104\)
Từ đó suy ra A < B
1.
\(a.\: \dfrac{63^2-47^2}{215^2-105^2}=\dfrac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\\ =\dfrac{16.110}{110.320}=\dfrac{16}{320}=\dfrac{1}{20}\)
\(b.\dfrac{437^2-363^2}{537^2-463^2}=\dfrac{\left(437-363\right)\left(437+363\right)}{\left(537-463\right)\left(537+463\right)}\\ =\dfrac{74.800}{74.1000}=\dfrac{800}{1000}=\dfrac{4}{5}\)
2.
\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50=100\)
\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52=104\)
\(vì\:100< 104\:nên\:26^2-24^2< 27^2-25^2\\ hay\:A< B\)