Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B3.
a) =\(\frac{\left(63+47\right).\left(63-47\right)}{\left(215+105\right).\left(215-105\right)}\) b) =\(\frac{\left(437+363\right).\left(437-363\right)}{\left(537+463\right).\left(537-463\right)}\)
=\(\frac{110.16}{320.110}\) =\(\frac{800.74}{1000.74}\)
=\(\frac{1}{20}\) =\(\frac{4}{5}\)
\(A=\frac{63^2-47^2}{215^2-105^2}=\frac{\left(63+47\right)\left(63-47\right)}{\left(215+105\right)\left(215-105\right)}=\frac{110\cdot16}{320\cdot110}=\frac{1}{20}\)
\(B=\frac{437^2-363^2}{537^2-463^2}=\frac{\left(473-363\right)\left(473+363\right)}{\left(573-463\right)\left(573+463\right)}=\frac{110\cdot836}{110\cdot1036}=\frac{836}{1036}=\frac{4\cdot209}{4\cdot234}=\frac{209}{234}\)
Trả lời:
\(A=\frac{63^2-47^2}{215^2-105^2}=\frac{\left(63-47\right).\left(63+47\right)}{\left(215-105\right).\left(215+105\right)}=\frac{16.110}{110.320}=\frac{1}{20}\)
\(B=\frac{437^2-363^2}{537^2-463^2}=\frac{\left(437-363\right).\left(437+363\right)}{\left(537-463\right).\left(537+463\right)}=\frac{74.800}{74.1000}=\frac{4}{5}\)
Học tốt
Bài 1:
a, \(\dfrac{63^2-47^2}{215^2-105^2}=\dfrac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}=\dfrac{16.110}{110.220}=\dfrac{16}{220}=\dfrac{4}{55}\)
b, \(\dfrac{427^2-373^2}{527^2-473^2}=\dfrac{\left(427-373\right)\left(427+373\right)}{\left(527-473\right)\left(527+473\right)}=\dfrac{54.800}{54.1000}=\dfrac{4}{5}\)
Bài 2:
\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50\)
\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52\)
Vì \(2.50< 2.52\Leftrightarrow A< B\)
Vậy A < B
Bài 3: Chỉ cần nhân hết cái trong ngoặc ở VT ra rồi nó sẽ bằng VP
HELP ME!!!
Hãy giúp mình hoàn thiện bài trong ngày hôm nay nhé!!!
THANK YOU
A=\(\frac{63^2-47^2}{215^2-105^2}\)
A=\(\frac{\left(63-47\right).\left(63+47\right)}{\left(215-105\right).\left(215+105\right)}\)
A=\(\frac{16.110}{110.320}\)
A=\(\frac{1760}{35200}\)
\(A=\frac{1}{20}\)
B=\(\frac{437^2-363^2}{537^2-463^2}\)
B=\(\frac{\left(437-363\right).\left(437+363\right)}{\left(537-463\right).\left(537+463\right)}\)
B=\(\frac{74.800}{74.1000}\)
B=\(\frac{4}{5}\)
Sửa đề :
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\)
Bài làm
đề có sai chỗ nào ko bn,mk thấy chỗ giả thiết sai sai thì phải,bn kt lại giúp mk
a: \(=\dfrac{\left(2\cdot547+1\right)\cdot3}{547\cdot211}-\dfrac{546}{547\cdot211}-\dfrac{4}{547\cdot211}\)
\(=\dfrac{2735}{547\cdot211}=\dfrac{5}{211}\)
b: x=7 nên x+1=8
\(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)
\(=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-x^{12}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}-...-x^3-x^2+x^2+x-5\)
=x-5=7-5=2
Bài 1:
a^2-5ab-6b^2=0
=>a^2-6ab+ab-6b^2=0
=>a*(a-6b)+b(a-6b)=0
=>(a-6b)(a+b)=0
=>a=-b hoặc a=6b
TH1: a=-b
\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)
TH2: a=6b
\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)
Mk xin lỗi nha, câu c sai đề
c) (x+6)4 + (x+8)4 = 272
a) \(\dfrac{63^2-47^2}{215^2-105^2}\)
= \(\dfrac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)
= \(\dfrac{16.110}{110.320}=\dfrac{16}{320}=\dfrac{1}{20}\)
b) \(\dfrac{437^2-363^2}{537^2-463^2}\)
= \(\dfrac{\left(437-363\right)\left(437+363\right)}{\left(537-463\right)\left(537+463\right)}\)
= \(\dfrac{74.800}{74.1000}=\dfrac{800}{1000}=\dfrac{4}{5}\)
2)
A = \(26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50=100\)
B = \(27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52=104\)
Từ đó suy ra A < B
1.
\(a.\: \dfrac{63^2-47^2}{215^2-105^2}=\dfrac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\\ =\dfrac{16.110}{110.320}=\dfrac{16}{320}=\dfrac{1}{20}\)
\(b.\dfrac{437^2-363^2}{537^2-463^2}=\dfrac{\left(437-363\right)\left(437+363\right)}{\left(537-463\right)\left(537+463\right)}\\ =\dfrac{74.800}{74.1000}=\dfrac{800}{1000}=\dfrac{4}{5}\)
2.
\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50=100\)
\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52=104\)
\(vì\:100< 104\:nên\:26^2-24^2< 27^2-25^2\\ hay\:A< B\)