\(\frac{1}{2019.2018}-\frac{1}{2018.2017}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

Mình làm bừa nha đúng đúng sai sai bạn đừng giận nhé !

\(\frac{1}{2019.2018}-\frac{1}{2018.2017}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{2019}-\frac{1}{2018}...-\frac{1}{3}-\frac{1}{2}-\frac{1}{2}-\frac{1}{1}\)

\(=\frac{1}{2019}-\left(\frac{1}{2018}-\frac{1}{2018}\right)-..-\frac{1}{1}\)

\(=\frac{1}{2019}-0-\frac{1}{1}=\frac{1}{2019}-\frac{1}{1}\)

\(=-\frac{2018}{2019}\)

26 tháng 9 2018

\(\frac{1}{2019.2018}-\frac{1}{2018.2017}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}+\frac{1}{2018.2019}\right)\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=-\left(1-\frac{1}{2019}\right)=-\frac{2018}{2019}\)

26 tháng 6 2017

a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

\(A=1-\frac{1}{99}\)

\(A=\frac{98}{99}\)

thay A vào, ta được :

\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)

b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)

\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)

đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)

\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)

\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)

\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(A=2.\left(1-\frac{1}{99}\right)\)

\(A=2.\frac{98}{99}\)

\(A=\frac{196}{99}\)

Thay A vào, ta được :

\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)

14 tháng 7 2018

\(A=\frac{1}{2003.2002}-\frac{1}{2002.2001}-\frac{1}{2001.2000}-....-\frac{1}{3.2}-\frac{1}{2.1}\)

    \(=-\left(\frac{1}{2003.2002}+\frac{1}{2002.2001}+\frac{1}{2001.2000}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

     \(=-\left(\frac{1}{2003}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2001}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)

      \(=-\left(\frac{1}{2003}-1\right)=-\left(-\frac{2002}{2003}\right)=\frac{2002}{2003}\)

Vậy ....

21 tháng 6 2017

bài này dễ mak bn !tự lm đê!

21 tháng 6 2017

 1/100‐1/100.99‐1/99.98‐...‐1/3.2‐1/2.1

\(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=-\frac{98}{100}=-\frac{49}{50}\)

27 tháng 1 2017

\(\Rightarrow P=\frac{1}{2000.1999}-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{1998.1999}\right)\)

\(=\frac{1}{2000.1999}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)

\(=\frac{1}{2000.1999}-\left(1-\frac{1}{1999}\right)\)

\(=\frac{1}{1999.2000}-\frac{1998}{1999}\)

\(\Rightarrow P+\frac{1997}{1999}=\frac{1}{1999.2000}-\frac{1998}{1999}+\frac{1997}{1999}\)

\(=\frac{-1}{2000}\)

27 tháng 1 2017

P= \(\frac{1}{2000.1999}\)-  (\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\))

  = \(\frac{1}{1999}-\frac{1}{2000}\)- (\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\))

  = \(\frac{1}{1999}-\frac{1}{2000}\)- ( \(1-\frac{1}{1999}\))

  = \(\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)

  = \(\frac{-1997}{1999}-\frac{1}{2000}\)

 =) P + \(\frac{1997}{1999}\)\(\frac{-1997}{1999}-\frac{1}{2000}+\frac{1997}{1999}=\frac{-1}{2000}\)

19 tháng 11 2017

Gọi \(A=\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow A=\frac{1}{99.100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)

\(\Rightarrow A=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)

\(\Rightarrow A=\frac{1}{9900}-\frac{98}{99}=\frac{1}{9900}-\frac{9800}{9900}\)

\(\Rightarrow A=\frac{-9799}{9900}\)

19 tháng 11 2017

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}-\frac{1}{2.1}=-\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)=-\left(1-\frac{1}{100}\right)=-\frac{99}{100}\)

26 tháng 7 2017

\(=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\) 

\(=\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\) 

\(=\frac{1}{99}-\frac{98}{99}=-\frac{97}{99}\)

13 tháng 7 2016

\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-1+\frac{1}{100}\)

\(C=\frac{-49}{50}\)

13 tháng 7 2016

C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1

C = 1/100 - (1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)

C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/98.99 + 1/99.100)

C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/98 - 1/99 + 1/99 - 1/100)

C = 1/100 - (1 - 1/100)

C = 1/100 - 99/100

C = -98/100 = -49/50

8 tháng 9 2016

Ta có:\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{9900}-\left(\frac{1}{99.98}+\frac{1}{98.97}+\frac{1}{97.96}+....+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)

30 tháng 12 2017

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)

29 tháng 6 2016

1) Tính:

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}\)\(-\frac{1}{2.1}\)

\(=\frac{1}{100}-\frac{1}{99}-\frac{1}{99}-\frac{1}{98}-\frac{1}{98}-\frac{1}{97}-\)\(...-\frac{1}{3}-\frac{1}{2}-\frac{1}{2}-\frac{1}{1}\)

\(=\frac{1}{100}-\frac{1}{1}\)

\(=-\frac{99}{100}\)