\(\frac{1}{2-\sqrt{3}}-3\)

giup minh nhe mn

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

\(\frac{1}{2-\sqrt{3}}-3=\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-3=\frac{2+\sqrt{3}}{4-3}-3\)\(=2+\sqrt{3}-3=\sqrt{3}-1\)

29 tháng 7 2019

a.

\(B=\left(\frac{x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\\ =\left(\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\\ =\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}}\\ =\frac{\sqrt{x}+1}{\sqrt{x}+3}\)

b. Ta có :

\(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\\ =\sqrt{25+2\cdot5\cdot\sqrt{2}+2}-\sqrt{16+2\cdot4\cdot\sqrt{2}+2}\\ =\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\\ =5+\sqrt{2}-4-\sqrt{2}=1\)

\(B=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{1+1}{1+3}=\frac{2}{4}=\frac{1}{2}\)

c. Giả sử B>\(\frac{1}{3}\), ta có

\(B=\frac{\sqrt{x}+1}{\sqrt{x}+3}>\frac{1}{3}\\ \Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{1}{3}>0\\ \Leftrightarrow\\\frac{3\left(\sqrt{x}+1\right)-\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow\frac{2\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\left(luondungvoix>0\right)\)

Vậy.........

\(A=\sqrt{x-2+2\sqrt{x-3}}+\sqrt{x+6+6\sqrt{x-3}}\\ A=\sqrt{x-3+2\sqrt{x-3}+1}+\sqrt{x-3+2.3.\sqrt{x-3}+9}\\ A=\sqrt{\left(\sqrt{x-3}+1\right)^2}+\sqrt{\left(\sqrt{x-3}+3\right)^2}\\ A=\left|\sqrt{x-3}+1\right|+\left|\sqrt{x-3}+3\right|\\ A=\sqrt{x-3}+1+\sqrt{x-3}+3\\ A=2\sqrt{x-3}+4\)

1 tháng 8 2019

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\Rightarrow\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{99}+\sqrt{100}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-......-\sqrt{99}+\sqrt{100}=10-1=9\)

1 tháng 12 2017

Ta có : \(\left(\sqrt{5}+\sqrt{7}\right)^2=5+7+2\sqrt{35}\)

=\(12+2\sqrt{35}\le12+2\sqrt{36}=12+2.6=24\)

\(\left(2\sqrt{6}\right)^2=24\)

Do đó \(\left(\sqrt{5}+\sqrt{7}\right)^2< \left(2\sqrt{6}\right)^2\)

\(\sqrt{5}+\sqrt{7}>0\)\(2\sqrt{6}>0\)

Vậy \(\sqrt{5}+\sqrt{7}< 2\sqrt{6}\)

18 tháng 7 2017

1)

a)

\(\sqrt{11-6\sqrt{2}}=\sqrt{2-2.3.\sqrt{2}+9}=\left|\sqrt{2}-3\right|=3-\sqrt{2}\)

\(A=3-\sqrt{2}+3+\sqrt{2}=6\)

b)

\(B^2=24+2\sqrt{12^2-4.11}=24+2\sqrt{100}=24+20=44\)

\(B=\sqrt{44}=2\sqrt{11}\)

NV
23 tháng 10 2019

1/ \(a+1=\sqrt[4]{\frac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)^2}}-\sqrt[4]{\frac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)^2}}=\sqrt{\frac{\sqrt{3}+1}{\sqrt{3}-1}}-\sqrt{\frac{\sqrt{3}-1}{\sqrt{3}+1}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}}=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

2/ \(a+b=5\Leftrightarrow\left(a+b\right)^3=125\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=125\)

\(\Rightarrow a^3+b^3=125-3ab\left(a+b\right)=125-3.1.5=110\)

3/ \(mn\left(mn+1\right)^2-\left(m+n\right)^2.mn\)

\(=mn\left(\left(mn+1\right)^2-\left(m+n\right)^2\right)\)

\(=mn\left(mn+1-m-n\right)\left(mn+1+m+n\right)\)

\(=mn\left(m-1\right)\left(n-1\right)\left(m+1\right)\left(n+1\right)\)

\(=\left(m-1\right)m\left(m+1\right)\left(n-1\right)n\left(n+1\right)\)

Do \(\left(m-1\right)m\left(m+1\right)\)\(\left(n-1\right)n\left(n+1\right)\) đều là tích của 3 số nguyên liên tiếp nên chúng đều chia hết cho 3 \(\Rightarrow\) tích của chúng chia hết cho 36

NV
23 tháng 10 2019

4/

Do \(0\le x\le1\Rightarrow\left\{{}\begin{matrix}x\ge0\\x-1\le0\end{matrix}\right.\) \(\Rightarrow x\left(x-1\right)\le0\)

\(\Leftrightarrow x^2-x\le0\Leftrightarrow x^2\le x\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

5/ Đặt \(\left\{{}\begin{matrix}\sqrt{5a+4}=x\\\sqrt{5b+4}=y\\\sqrt{5c+4}=z\end{matrix}\right.\)

Do \(a+b+c=1\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow2\le x;y;z\le3\)\(x^2+y^2+z^2=5\left(a+b+c\right)+12=17\)

Khi đó ta có:

Do \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)

\(\Leftrightarrow x^2-5x+6\le0\Leftrightarrow x\ge\frac{x^2+6}{5}\)

Tương tự: \(y\ge\frac{y^2+6}{5}\) ; \(z\ge\frac{z^2+6}{5}\)

Cộng vế với vế:

\(A=x+y+z\ge\frac{x^2+y^2+z^2+18}{5}=\frac{17+18}{5}=7\)

\(\Rightarrow A_{min}=7\) khi \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị