Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\) \(\left(a>0;a\ne2\right)\)
\(=\left[\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right]:\frac{a+2}{a-2}\)
\(=\frac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}.\frac{a-2}{a+2}\)
\(=\frac{2\sqrt{a}}{\sqrt{a}}.\frac{a-2}{a+2}\)
\(=\frac{2\left(a-2\right)}{a+2}\)
b, Để: \(A=1\Leftrightarrow\frac{2\left(a-2\right)}{a+2}=1\)
\(\Rightarrow\frac{2a-4-a-2}{a+2}=0\)
\(\Rightarrow\frac{a-6}{a+2}=0\)
\(\Rightarrow a-6=0\)
\(\Rightarrow a=6\left(tm\right)\)
Vậy...........................
\(A=\frac{\left(x-1\right)-5\sqrt{x-1}+6}{\sqrt{x-1}\cdot\left(\sqrt{x-1}-3\right)}=\frac{\left(\sqrt{x-1}-2\right)\cdot\left(\sqrt{x-1}-3\right)}{\sqrt{x-1}\cdot\left(\sqrt{x-1}-3\right)}\) Đk x\(\ne\) 1;10
\(A=\frac{\sqrt{x-1}-2}{\sqrt{x-1}}=1-\frac{2}{\sqrt{x-1}}\)
Từ 1 đến 9 có số lượt chữ số là:
( 9 - 1 ) : 1 + 1 x 1 = 9 ( chữ số )
Từ 10 đến 99 có số lượt chữ số là:
[( 99 - 10 ) : 1 + 1 ] x 2 = 180 ( chữ số )
Từ 1 đến 100 có số lượt chữ số là:
180 + 9 + 3 = 192 ( chữ số )
Có 11 lượt chữ số 7 : 7;17;27;37;47;57;67;77;87;97
umgr hộ nha
xinlooix mình trả lời nhầm
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}+\frac{\sqrt{n+1}}{n+1}\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\frac{\sqrt{1}}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{99}}{99}-\frac{\sqrt{100}}{100}\)
\(=1-\frac{\sqrt{100}}{100}=\frac{9}{10}< 1\)
\(=\left(\frac{x-2\sqrt{x}-1}{x-4}-\frac{x-4}{x-4}\right):\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right]\)
\(=\frac{x-2\sqrt{x}-1-x+4}{x-4}:\left[\frac{\sqrt{x}-2}{\sqrt{x}+3}+\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right]\)
\(=\frac{3-2\sqrt{x}}{x-4}:\frac{\left(x-4\right)\left(\sqrt{x}-3\right)+\left(x-4\right)\left(\sqrt{x}+3\right)-\left(x-9\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)\left(\sqrt{x}+2\right)}\)
bạn làm tiếp nha! làm bằng máy tính phức tạp lắm
+ \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)-n}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Do đó : \(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\Rightarrow\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{99}+\sqrt{100}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-......-\sqrt{99}+\sqrt{100}=10-1=9\)