Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\frac{102}{103}\)
\(=\frac{34}{103}\)
b) \(\frac{1}{2000.1999}-\frac{1}{1999.1998}-\frac{1}{1998.1997}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{2000.1999}-\left(\frac{1}{1999.1998}+\frac{1}{1998.1997}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)(*)
Đặt biểu thức trong ngoặc là A ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1997.1998}+\frac{1}{1998.1999}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1997}-\frac{1}{1998}+\frac{1}{1998}-\frac{1}{1999}\)
\(A=1-\frac{1}{1999}\)
\(A=\frac{1998}{1999}\)
Thay vào biểu thức (*) ta có :
\(\frac{1}{2000.1999}-\frac{1998}{1999}\)
\(=\frac{1}{3998000}-\frac{1998}{1999}\)
\(=\frac{-3995999}{3998000}\)
c) \(\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)
\(=\frac{-1}{1.3}+\frac{-1}{3.5}+\frac{-1}{5.7}+\frac{-1}{7.9}+...+\frac{-1}{99.101}\)
\(=\frac{-1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=\frac{-1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{-1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{-1}{2}.\frac{100}{101}\)
\(=\frac{-50}{101}\)
_Chúc bạn học tốt_
Bài 1c)
\(\frac{1}{3}+x=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{110}\)
\(\frac{1}{3}+x=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{10.11}\)
\(\frac{1}{3}+x=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)
\(\frac{1}{3}+x=\frac{1}{3}-\frac{1}{11}=\frac{11}{33}-\frac{3}{33}=\frac{8}{33}\)
\(x=\frac{8}{33}-\frac{1}{3}=\frac{8}{33}-\frac{11}{33}=\frac{-3}{33}=\frac{-1}{11}\)
Lời giải:
Ta có: \(G=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+.....+\frac{1}{9999}\)
\(\Rightarrow2.G=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+.....+\frac{2}{9999}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(\Rightarrow G=\frac{50}{101}\) . Vậy: \(\\G=\frac{50}{101}\)
Chúc bạn học tốt!Tick cho mình nhé!
\(G=\frac{1}{3}+\frac{1}{15}+...+\frac{1}{9999}\)
\(\Leftrightarrow G=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{1}{99.101}\right)\)
\(\Leftrightarrow G=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Leftrightarrow G=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(\Leftrightarrow G=\frac{1}{2}.\frac{100}{101}\)
\(\Leftrightarrow G=\frac{50}{101}\)
Vậy : \(G=\frac{50}{101}\)
B. 1/3 - 1/3 - 3/5 +3/5 + 5/7 - 5/7 + 9/11 - 9/11 -11/13 + 11/ 13 + 7/9 + 13/15
= 0 -0-0-0-0+7/9 +13/15
= 74/45
\(A=1+1+1+1-\left(\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}\right)\)
\(A=4+\left(\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}\right)\)
\(A=4+\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\)
\(A=4+\left(1-\frac{1}{9}\right)\)
\(A=4+\frac{8}{9}=\frac{44}{9}\)
Vậy A=44/9
e) \(\frac{1}{7}.\frac{-3}{8}+\frac{-13}{8}.\frac{1}{7}\)
\(=\frac{1}{7}.\left[\left(-\frac{3}{8}\right)+\left(-\frac{13}{8}\right)\right]\)
\(=\frac{1}{7}.\left(-2\right)\)
\(=-\frac{2}{7}.\)
Chúc bạn học tốt!
−13/39 = −21/63
1/234567 > −2/14
−39/65 = −21/35
1/2012 > −1/14
\(A=-5,13:\left(5\frac{5}{28}-1\frac{8}{9}.1,25+1\frac{16}{63}\right)\)
\(A=-5,13:\left(5\frac{5}{28}-\frac{85}{36}+1\frac{16}{63}\right)\)
\(A=-5,13:\frac{57}{14}=-\frac{63}{50}\)
\(B=\left(3\frac{1}{3}.1,9+19,5:4\frac{1}{3}\right).\left(\frac{62}{72}-\frac{4}{25}\right)\)
\(B=\left(\frac{19}{3}+\frac{9}{2}\right).\frac{631}{900}\)
\(B=\frac{65}{6}.\frac{631}{900}=\frac{8203}{1080}\)
a) \(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{19}-\frac{1}{19}+\frac{1}{23}-\frac{1}{23}+\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)
\(=\frac{1}{2}-\frac{2}{27}\)
\(=\frac{23}{54}\)
b) \(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)
\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+\frac{1}{20}-...-\frac{1}{95}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\frac{19}{100}\)
\(=1-\frac{19}{500}\)
\(=\frac{481}{500}\)
\(A=\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)
\(A=-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
\(\Rightarrow2A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99\cdot101}\right)\)
\(2A=-\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+...+\frac{2}{99}-\frac{2}{101}\right)\)
\(2A=-\left(2-\frac{2}{101}\right)\)
\(2A=-\frac{200}{101}\)
\(\Rightarrow A=-\frac{100}{101}\)
Đặt biểu thức trên là A, ta có:
\(A=\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)
\(\Rightarrow A=-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
\(\Rightarrow A=-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
\(\Rightarrow2A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(\Rightarrow2A=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow2A=-\left(1-\frac{1}{101}\right)\)
\(\Rightarrow2A=-\frac{100}{101}\)
\(\Rightarrow A=-\frac{100}{101}\div2=-\frac{50}{101}\)