Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
Cho \(\Delta ABC\) có \(\widehat{A}=120\) độ, AB = 4cm , AC = 6cm. Tính độ dài đường trung tuyến AM.
Xin lỗi vì mình không biết cách để đưa hình lên đây nhưng bạn có thể tự vẽ mà!!
a) Vì tam giác ABC vuông nên đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên
AM=\(\frac{BC}{2}=\frac{10}{2}=5\)
b) Tứ giác ADME là hình chữ nhật hay có 4 góc bằng nhau và bằng 90 độ
c) Giả sử AEMD là hình vuông
=> AE=AD
=>AC=AB
Vậy để AEMD là hình vuông thì tam giác ABC vuông cân
Hạ BD vuông góc với AC tại D; AH vuông góc với BC tại H
 = 120 độ => BÂD = 60 độ.
AB = 4 => AD = 2; BD = 2sqrt3 => CD = 8
Pytago cho tam giác vuông BCD => BC = 2sqrt19.
Tam giác CHA đồng dạng với tam giác CDB (g.g)
=> CH : CD = CA : CB = AH : BD
Thay các số đã biết vào dãy tỉ số trên => CH = 24:(sqrt19); AH = 6(sqrt57) : 19
CM = 1/2BC = sqrt19
=> HM = CH - CM = 5:(sqrt19)
Pytago cho tam giác vuông AHM => AM = \(\sqrt{7}\)
Kẽ MN // AC
\(\Rightarrow\)MN là đường trung bình
\(\Rightarrow MN=\dfrac{AC}{2}=\dfrac{6}{2}=3\)
Ta lại có: \(\widehat{ANM}=180-\widehat{A}=180-120=60\)
Kẽ MH \(\perp\) AB
\(\Rightarrow\Delta MHN\) là nửa tam giác đều
\(\Rightarrow\left\{{}\begin{matrix}NH=\dfrac{MN}{2}=\dfrac{3}{2}\\MH=\dfrac{\sqrt{3}MN}{2}=\dfrac{3\sqrt{3}}{2}\end{matrix}\right.\)
\(\Rightarrow AH=AN-NH=\dfrac{AB}{2}-NH=\dfrac{4}{2}-\dfrac{3}{2}=\dfrac{1}{2}\)
Ta có tam giác AHM vuông tại H nên
\(\Rightarrow AM^2=AH^2+MH^2=\dfrac{1}{4}+\dfrac{27}{4}=7\)
\(\Rightarrow AM=\sqrt{7}\)