Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)
\(=\frac{50-5}{9}=\frac{45}{9}=5\)
Từ đó suy ra x = 11,y = 17,z = 23
b)
a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)
b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)
Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)
c) Tự làm nhé
Xét tam giác ABC có các đường trung tuyến AM,BD,CE
Gọi G là trọng tâm
*) Chứng minh: AM + BD + CE < AB + BC + CA
+) Trên tia đối của tia MA lấy K sao cho MA = MK
Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC
+) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC
=> 2.AM < AB + AC (1)
Tương tự, ta có: 2.BD < AB + BC (2)
2.CE < AC + BC (3)
Cộng từng vế của (1)(2)(3) => 2.(AM + BD + CE) < 2. (AB + BC + CA)
=> AM + BD + CE < AB + BC + CA
*) Chứng minh: 3/4 (AB + BC + CA) < AM + BD + CE
+) Xét tam giác AGB có: AG + GB > AB
mà AG = 2/3 .AM ; BG = 2/3 .BD (do G là trong tâm tam giác ABC)
=> 2/3 .(AM + BD) > AB
+) Tương tự, ta có: 2/3 (AM + CE) > AC; 2/3 (BD + CE) > BC
=> 2/3 .2. (AM + BD + CE) > AB + BC + CA
<=> 4/3 (AM + BD + CE) > AB + BC + CA
=> AM + BD + CE > 3/4 (AB + BC + CA)
=> ĐPCM
Dạng này hình như lớp 8 mà bạn
bạn zô đây cô loan chỉ tường tận luôn nè http://olm.vn/hoi-dap/question/94245.html
bài 2:
gọi độ dài mỗi cạnh của tam giác lần lượt là a,b,c tỉ lệ với 5;7;4
theo đề ta có: \(\frac{a}{5}=\frac{b}{7}=\frac{c}{4}\) và a + b + c = 64
áp dụng t/c DTSBN ta có:
\(\frac{a}{5}=\frac{b}{7}=\frac{c}{4}=\frac{a+b+c}{5+7+4}=\frac{64}{16}=4\)
=> \(\hept{\begin{cases}\frac{a}{5}=4\\\frac{b}{7}=4\\\frac{c}{4}=4\end{cases}}\)
=> \(\hept{\begin{cases}a=20\\b=28\\c=16\end{cases}}\)
vậy độ dài mỗi cạnh của tam giác lần lượt là 20cm ; 28cm ; 16cm
chúc bạn học tốt!!! ^^
546456546544575678456457467684594262645654745745756756756856856454564563463
gọi các cạnh của tam giác lần lượt là a,b,c ( mm )
Theo đề bài : \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và a + b + c = 45
Theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)
\(\Rightarrow\)a = 9 ; b = 15 ; c = 21
Vậy các cạnh của tam giác đó là 9 ; 15 ; 21
gọi độ dài ba cạnh tam giác lần lượt là a,b,c
=> a : b : c = 3 : 5 : 7
=> a/3 = b/5 = c/7
Và a + b + c = 45mm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)
=> a = 3.3 = 9
b = 3.5 = 15
c = 3.7 = 21
Vậy độ dài ba cạnh tam giác đó lần lượt là: 9mm, 15mm, 21mm
vì a,b,c tỉ lệ nghịch với 1/2;1/5;1/7 nên a/2=b/5=c/7. Hay a/2=b/5=2c/14
ADTCCDTSBN TA CÓ
a/2=b/5=2c/14=a+b-2c/2+5-14=70/-7=-10
Suy ra a/2=-10 nên a=-20
b/5=-10 nên b=-50
2c/14=-10 nên c=-70
Biết 3 số a,b,c chúng tỉ lệ nghịch với 1/2 ; 1/5 ; 1/7
=> a/2 = b/5 = c/7
=> a/2 = b/5 = -2c/-14
Áp dụng tc dãy tỉ số = nhau ta đc :
a/2 = b/5 = -2c/-14 = (a+b-2c)/(2+5-14) = 70/-7 = -10
=>a= -20 ; b= -50 ; c = -70
=> a+b-c = 0