K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

Đáp án A.

Gọi M là trung điểm của BC, suy ra:

Gọi l, R lần lượt là đường sinh và bán kính của hình nó ngoại tiếp hình chóp, khi đó:

Diện tích xung quanh của hình nón ngoại tiếp hình chóp là:

 

3 tháng 3 2019

Đáp án A

Gọi O là tâm của hình vuông ABCD.

Do S.ABCD là hình chóp đều nên SO  (ACBD)

Suy ra, OB là hình chiếu vuông góc của SB lên mp(ABCD)

30 tháng 7 2018

NV
8 tháng 1 2021

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABC\right)\Rightarrow\widehat{SAO}=60^0\)

\(AO=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

\(SA=\dfrac{AO}{cos60^0}=\dfrac{2a\sqrt{3}}{3}\)

\(S_{xq}=\pi.AO.SA=\dfrac{2\pi a^2}{3}\)

 

9 tháng 9 2017

Gọi O là tâm của hình vuông ABCD. Do S.ABCD là hình chóp đều nên SO ⊥(ACBD)

Suy ra, OB là hình chiếu vuông góc của SB lên mp(ABCD)

10 tháng 4 2017

18 tháng 4 2016

S D A H B M C I N

Gọi H là tâm của ABCD\(\Rightarrow SH\perp\left(ABCD\right)\)

      M là trung điểm của BC \(\Rightarrow BC\perp\left(SHM\right)\)

Do các mặt bên tạo với đáy cùng 1 góc => \(\widehat{SHM}\) bằng góc tạo bởi 2 mặt bên với đáy

Tính được \(SH=\frac{a\sqrt{3}}{2}'HM=\frac{a}{2}\)

\(\tan\widehat{SMH}=\frac{SH}{MH}=\sqrt{3}\Rightarrow\widehat{SMN}=60^0\)

Lập luận được tâm khối cầu là điểm I của SH với trung trực SC trong (SHC)

Tính được bán kính khối cầu do tam giác SNI đồng dạng với tam giác SHC

\(\Rightarrow SI=\frac{SN.SC}{SH}=\frac{5a}{4\sqrt{3}}\)

Vậy \(V=\frac{4}{3}\pi R^2=\frac{125a^3\sqrt{3}\pi}{432}\)

3 tháng 1 2019

Đáp án C

Gọi O là tâm đường tròn nội tiếp ∆ ABC.Theo giả thiết, góc giữa cạnh bên và đáy chính là góc giữa SA và OA hay S A O ^ = 45 o .Diện tích xung quanh cần tính là:  S x q = π R l

Tam giác ABC đều cạnh 2a nên AH =a 3

Suy ra:

26 tháng 8 2018